• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Youjun, ZHANG zhengxi, ZHANG Chao, LIU Tianyu, ZHANG Xu. Theoretical study on equivalent stiffness of F-type socket joints in rectangular pipe jacking tunnels[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 506-515. DOI: 10.11779/CJGE20231165
Citation: XU Youjun, ZHANG zhengxi, ZHANG Chao, LIU Tianyu, ZHANG Xu. Theoretical study on equivalent stiffness of F-type socket joints in rectangular pipe jacking tunnels[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 506-515. DOI: 10.11779/CJGE20231165

Theoretical study on equivalent stiffness of F-type socket joints in rectangular pipe jacking tunnels

More Information
  • Received Date: November 27, 2023
  • Available Online: July 30, 2024
  • The equivalent stiffness is an important parameter for calculating the longitudinal deformation of tunnels. To explore the influences of the equivalent stiffness on the rectangular pipe jacking tunnel, taking the rectangular pipe jacking tunnel of Hailiang Square in Hohhot as the design reference, the analytical solution for the equivalent stiffness of the joint of the rectangular pipe jacking tunnel is established by using the equivalent principle of longitudinal deformation and the section shear coefficient of the Timoshenko beam. The laboratory experiments are used to explore the influence factors for the equivalent stiffness. The results show that: (1) Under the action of shear, the shear stiffness of the joint is mainly divided into elastic stage, yield stage and failure stage. (2) The theoretical results of the equivalent stiffness are nearly the same as the model experimental data, which verifies the rationality of the analytical solution. (3) Reducing the width and increasing the height of the pipe section can effectively increase the equivalent stiffness of the joint. The section size has small effects on the equivalent shear stiffness, and the bending deformation should be taken as the key research in the design of the pipe section. The steel sleeve ring is proportional to the equivalent stiffness and inversely proportional to the lifting rate. It is recommended that the thickness of the steel sleeve ring be 13~17 mm.
  • [1]
    贾连辉. 矩形顶管在城市地下空间开发中的应用及前景[J]. 隧道建设, 2016, 36(10): 1269-1276. doi: 10.3973/j.issn.1672-741X.2016.10.017

    JIA Lianhui. Application of rectangular pipe jacking machine to urban underground space development and its prospects[J]. Tunnel Construction, 2016, 36(10): 1269-1276. (in Chinese) doi: 10.3973/j.issn.1672-741X.2016.10.017
    [2]
    朱合华, 吴江斌, 潘同燕. 曲线顶管的三维力学模型理论分析与应用[J]. 岩土工程学报, 2003, 25(4): 492-495. doi: 10.3321/j.issn:1000-4548.2003.04.024

    ZHU Hehua, WU Jiangbin, PAN Tongyan. Theoretical analysis of three-dimensional mechanical model of curved pipe jacking and its application[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 492-495. (in Chinese) doi: 10.3321/j.issn:1000-4548.2003.04.024
    [3]
    朱合华, 叶冠林, 潘同燕. 大口径急曲线钢筋混凝土顶管管节接缝张开量分析[J]. 施工技术, 2001, 30(1): 36-38.

    ZHU Hehua, YE Guanlin, PAN Tongyan. Analysis of splaying amount of joints of segments of large-diameter large-curvature reinforcement concrete pushing-pipe[J]. Construction Technology, 2001, 30(1): 36-38. (in Chinese)
    [4]
    丁文其, 朱合华, 范明星, 等. 管节-接头的弹性地基梁法及顶管施工模拟分析[J]. 同济大学学报(自然科学版), 2001, 29(5): 616-620, 630. doi: 10.3321/j.issn:0253-374X.2001.05.025

    DING Wenqi, ZHU Hehua, FAN Mingxing, et al. Beam on elastic foundation method considering pipe-joint and analysis of pipe jacking construction[J]. Journal of Tongji University, 2001, 29(5): 616-620, 630. (in Chinese) doi: 10.3321/j.issn:0253-374X.2001.05.025
    [5]
    张冬梅, 樊振宇, 黄宏伟. 考虑接头力学特性的盾构隧道衬砌结构计算方法研究[J]. 岩土力学, 2010, 31(8): 2546-2552. doi: 10.3969/j.issn.1000-7598.2010.08.033

    ZHANG Dongmei, FAN Zhenyu, HUANG Hongwei. Mechanical characteristics of joints Calculation method of shield tunnel lining considering[J]. Rock and Soil Mechanics, 2010, 31(8): 2546-2552. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.08.033
    [6]
    闫治国, 丁文其, 沈碧伟, 等. 输水盾构隧道管片接头力学与变形模型研究[J]. 岩土工程学报, 2011, 33(8): 1185-1191. http://cge.nhri.cn/article/id/14149

    YAN Zhiguo, DING Wenqi, SHEN Biwei, et al. Structural model for radial joints of water-conveyance shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1185-1191. (in Chinese) http://cge.nhri.cn/article/id/14149
    [7]
    闫治国, 彭益成, 丁文其, 等. 青草沙水源地原水工程输水隧道单层衬砌管片接头荷载试验研究[J]. 岩土工程学报, 2011, 33(9): 1385-1390. http://cge.nhri.cn/article/id/14179

    YAN Zhiguo, PENG Yicheng, DING Wenqi, et al. Load tests on segment joints of single lining structure of shield tunnel in Qingcaosha Water Conveyance Project[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1385-1390. (in Chinese) http://cge.nhri.cn/article/id/14179
    [8]
    闫治国, 周龙, 朱合华, 等. 深埋排水盾构隧道接头铸铁件力学性能试验[J]. 同济大学学报(自然科学版), 2019, 47(3): 331-338.

    YAN Zhiguo, ZHOU Long, ZHU Hehua, et al. Experimental study on mechanical properties of ductile-iron joint panels for segmental joints in deep-buried drainage shield tunnels[J]. Journal of Tongji University (Natural Science), 2019, 47(3): 331-338. (in Chinese)
    [9]
    SALEMI A, ESMAEILI M, SERESHKI F. Normal and shear resistance of longitudinal contact surfaces of segmental tunnel linings[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77: 328-338. doi: 10.1016/j.ijrmms.2015.04.014
    [10]
    志波由纪夫, 川島一彦, 大日方尚己. 応答変位法によるシ―ルドトソネルの地震时断面力の算定法[J]. 土木学会論文集, 1989(404): 385-394.

    SHIBA Y, KAWASHIMA K, OBINATA N, et al. Evaluation procedure for seismic stress developed in shield tunnels based on seismic deformation method[J]. Doboku Gakkai Ronbunshu, 1989(404): 385-394. (in Japanese)
    [11]
    徐凌. 盾构隧道纵向沉降性态研究[D]. 上海: 同济大学, 2005.

    XU Ling. Study on Longitudinal Settlement Behavior of Shield Tunnel[D]. Shanghai: Tongji University, 2005. (in Chinese)
    [12]
    黄亮, 梁荣柱, 吴小建, 等. 类矩形盾构隧道纵向抗弯刚度分析[J]. 岩土工程学报, 2019, 41(11): 2094-2102. doi: 10.11779/CJGE201911015

    HUANG Liang, LIANG Rongzhu, WU Xiaojian, et al. Longitudinal bending stiffness of quasi-rectangular shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2094-2102. (in Chinese) doi: 10.11779/CJGE201911015
    [13]
    李翔宇, 刘国彬, 杨潇, 等. 基于修正纵向等效连续化模型的隧道变形受力研究[J]. 岩土工程学报, 2014, 36(4): 662-670. doi: 10.11779/CJGE201404010

    LI Xiangyu, LIU Guobin, YANG Xiao, et al. Deformation and stress of tunnel structures based on modified longitudinal equivalent continuous model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 662-670. (in Chinese) doi: 10.11779/CJGE201404010
    [14]
    梁荣柱, 王凯超, 黄亮, 等. 类矩形盾构隧道纵向等效抗弯刚度解析解[J]. 岩土工程学报, 2022, 44(2): 212-223. doi: 10.11779/CJGE202202002

    LIANG Rongzhu, WANG Kaichao, HUANG Liang, et al. Analytical solution for longitudinal equivalent bending stiffness of quasi-rectangular shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 212-223. (in Chinese) doi: 10.11779/CJGE202202002
    [15]
    钟小春, 张金荣, 秦建设, 等. 盾构隧道纵向等效弯曲刚度的简化计算模型及影响因素分析[J]. 岩土力学, 2011, 32(1): 132-136. doi: 10.3969/j.issn.1000-7598.2011.01.021

    ZHONG Xiaochun, ZHANG Jinrong, QIN Jianshe, et al. Simplified calculation model for longitudinal equivalent bending stiffness of shield tunnel and its influence factors' analysis[J]. Rock and Soil Mechanics, 2011, 32(1): 132-136. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.01.021
    [16]
    叶飞, 杨鹏博, 毛家骅, 等. 基于模型试验的盾构隧道纵向刚度分析[J]. 岩土工程学报, 2015, 37(1): 83-90. doi: 10.11779/CJGE201501009

    YE Fei, YANG Pengbo, MAO Jiahua, et al. Longitudinal rigidity of shield tunnels based on model tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 83-90. (in Chinese) doi: 10.11779/CJGE201501009
    [17]
    郑庆坂, 潘伍, 覃永杰, 等. 大断面矩形盾构隧道等效抗弯刚度研究[J]. 科学技术与工程, 2020, 20(23): 9590-9596. doi: 10.3969/j.issn.1671-1815.2020.23.049

    ZHENG Qingban, PAN Wu, QIN Yongjie, et al. Study on equivalent bending stiffness of large section rectangular shield tunnel[J]. Science Technology and Engineering, 2020, 20(23): 9590-9596. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.23.049
    [18]
    王祖贤, 施成华, 龚琛杰, 等. 考虑横向性能的盾构隧道纵向非线性等效抗弯刚度计算模型[J]. 岩土力学, 2023, 44(5): 1295-1308.

    WANG Zuxian, SHI Chenghua, GONG Chenjie, et al. Calculation model of longitudinal nonlinear equivalent bending stiffness of shield tunnel considering its transverse performance[J]. Rock and Soil Mechanics, 2023, 44(5): 1295-1308. (in Chinese)
    [19]
    耿萍, 陈枰良, 张景, 等. 轴力和弯矩共同作用下盾构隧道纵向非线性等效抗弯刚度研究[J]. 岩石力学与工程学报, 2017, 36(10): 2522-2534.

    GENG Ping, CHEN Pingliang, ZHANG Jing, et al. Nonlinear longitudinal equivalent bending stiffness of shield tunnel under the combined effect of axial force and bending moment[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2522-2534. (in Chinese)
    [20]
    肖时辉, 黄海斌, 王明年, 等. 大直径盾构隧道管片纵向连接抗剪刚度分析[J]. 铁道建筑, 2018, 58(7): 61-64. doi: 10.3969/j.issn.1003-1995.2018.07.15

    XIAO Shihui, HUANG Haibin, WANG Mingnian, et al. Analysis of longitudinal connection shear stiffness of large diameter shield tunnel segment[J]. Railway Engineering, 2018, 58(7): 61-64. (in Chinese) doi: 10.3969/j.issn.1003-1995.2018.07.15
    [21]
    康佳旺. 矩形顶管隧道F型承插接头剪切变形机理与控制标准研究[D]. 内蒙古: 内蒙古科技大学, 2022.

    KANG Jiawang. Study on Shear Deformation Mechanism and Control Standard of F-type Socket Joint in Rectangular Pipe Jacking Tunnel[D]. Inner Mongolia: Inner Mongolia University of Science and Technology, 2022. (in Chinese)
    [22]
    王乐, 王亮. 一种新的计算Timoshenko梁截面剪切系数的方法[J]. 应用数学和力学, 2013, 34(7): 756-763. doi: 10.3879/j.issn.1000-0887.2013.07.011

    WANG Yue, WANG Liang. A new method for calculating the shear coefficient of Timoshenko beam[J]. Applied Mathematics and Mechanics, 2013, 34(7): 756-763. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.07.011
    [23]
    陈拴, 吴怀娜, 沈水龙, 等. 盾构隧道纵向结构变形模式及理论模型[J]. 土木工程学报, 2019, 52(增刊1): 85-92.

    CHEN Shuan, WU Huaina, SHEN Shuilong, et al. Deformation mode and theoretical model of longitudinal structure of shield tunnel[J]. Journal of Civil Engineering, 2019, 52(S1): 85-92. (in Chinese)
    [24]
    中国工程建设标准化协会. 矩形顶管工程技术规程: T/CECS 716—2020[S]. 2020.

    China Association for Engineering Construction Standardization. Technical Specification for Pipe Jacking Engineering with Rectangular Cross Section: T/CECS 716—2020[S]. 2020. (in Chinese)

Catalog

    Article views (241) PDF downloads (47) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return