Citation: | HU Rui-geng, LIU Hong-jun, SHI Wei. Mechanism of residual liquefaction of silty seabed under standing waves[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1228-1237. DOI: 10.11779/CJGE202107007 |
[1] |
王小雯. 波浪作用下饱和砂质海床液化机理研究[D]. 北京: 清华大学, 2017.
WANG Xiao-wen. Research on Mechanics of Wave-Induced Liquefaction in Saturated Sandy Seabed[D]. Beijing: Tsinghua University, 2017. (in Chinese)
|
[2] |
王虎. 波浪作用下黄河三角洲粉质土海床不稳定机制研究[D]. 青岛: 中国海洋大学, 2012.
WANG Hu. Mechanism of Wave-Induced Instability of the Silty Seabed in the Yellow River Delta[D]. Qingdao: Ocean University of China, 2012. (in Chinese)
|
[3] |
TSAI C P. Wave-induced liquefaction potential in a porous seabed in front of a breakwater[J]. Ocean Engineering, 1995, 22(1): 1-18. doi: 10.1016/0029-8018(94)00042-5
|
[4] |
SEKIGUCHI H, KITA K, OKAMOTO O, et al. Response of poro-elastoplastic beds to standing waves[J]. Soils and Foundations, 1995, 35(3): 31-42. doi: 10.3208/sandf.35.31
|
[5] |
SASSA S, SEKIGUCHI H. Wave-induced liquefaction of beds of sand in a centrifuge[J]. Géotechnique, 1999, 49(5): 621-638. doi: 10.1680/geot.1999.49.5.621
|
[6] |
JENG D S, LIN Y S. Poroelastic analysis of the wave-seabed interaction problem[J]. Computers and Geotechnics, 2000, 26(1): 43-64. doi: 10.1016/S0266-352X(99)00032-4
|
[7] |
周晓智, 陈育民, 刘汉龙. 驻波作用下有限厚度海床动应力路径特性研究[J]. 岩土工程学报, 2018, 40(5): 890-899. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805017.htm
ZHOU Xiao-zhi, CHEN Yu-min, LIU Han-long. Study on characteristics of dynamic stress path of finite-thickness seabed under standing waves[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 890-899. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805017.htm
|
[8] |
ZHAO H Y, JENG D S, LIAO C C, et al. Three-dimensional modeling of wave-induced residual seabed response around a mono-pile foundation[J]. Coastal Engineering, 2017, 128: 1-21. doi: 10.1016/j.coastaleng.2017.07.002
|
[9] |
JENG D S, ZHAO H Y. Two-Dimensional model for accumulation of pore pressure in marine sediments[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2015, 141(3): 04014042. doi: 10.1061/(ASCE)WW.1943-5460.0000282
|
[10] |
KIRCA V S O, SUMER B M, FREDSOE J. Residual liquefaction of seabed under standing waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2013, 139(6): 489-501. doi: 10.1061/(ASCE)WW.1943-5460.0000208
|
[11] |
WANG H, LIU H J, ZHANG M S. Pore pressure response of seabed in standing waves and its mechanism[J]. Coastal Engineering, 2014, 91: 213-219. doi: 10.1016/j.coastaleng.2014.06.005
|
[12] |
YANG G X, YE J H. Nonlinear standing wave-induced liquefaction in loosely deposited seabed[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(1): 205-223. doi: 10.1007/s10064-017-1038-z
|
[13] |
SASSA S, SEKIGUCHI H. Analysis of wave-induced liquefaction of sand beds[J]. Géotechnique, 2001, 51(2): 115-126. doi: 10.1680/geot.2001.51.2.115
|
[14] |
蔡正银, 吴诗阳, 武颖利, 等. 高地震烈度区深厚覆盖砂层液化研究[J]. 岩土工程学报, 2020, 42(3): 405-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003003.htm
CAI Zheng-yin, WU Shi-yang, WU Ying-li, et al. Liquefaction of deep overburden layers in zones with high earthquake intensity[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 405-412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003003.htm
|
[15] |
SASSA S, SEKIGUCHI H. Analysis of wave-induced liquefaction of sand beds[J]. Géotechnique, 2001, 51(5): 115-126.
|
[16] |
JENG D S. Soil response in cross-anisotropic seabed due to standing waves[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(1): 9-19. doi: 10.1061/(ASCE)1090-0241(1997)123:1(9)
|
[17] |
ZEN K, YAMAZAKI H. Mechanism of wave-induced liquefaction and densification in seabed[J]. Soils and Foundations, 1990, 30(4): 90-104. doi: 10.3208/sandf1972.30.4_90
|
[18] |
MUTLU SUMER B, HATIPOGLU F, FREDSOE J, et al. The sequence of sediment behaviour during wave-induced liquefaction[J]. Sedimentology, 2006, 53(3): 611-629. doi: 10.1111/j.1365-3091.2006.00763.x
|
[19] |
MADSEN O S. Wave-induced pore pressures and effective stresses in a porous bed[J]. Géotechnique, 1978, 28(4): 377-393. doi: 10.1680/geot.1978.28.4.377
|
[20] |
刘红军, 王小花, 贾永刚, 等. 黄河三角洲饱和粉土液化特性及孔压模型试验研究[J]. 岩土力学, 2005, 26(增刊2): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S2021.htm
LIU Hong-jun, WANG Xiao-hua, JIA Yong-gang, et al. Experimental study on liquefaction properties and pore-water pressure model of saturated silt in Yellow River Delta[J]. Rock and Soil Mechanics, 2005, 26(S2): 83-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S2021.htm
|
[1] | ZHANG Zhao, CHENG Jing-xuan, LIU Feng-yin, QI Ji-lin, CHAI Jun-rui, LI Hui-yong. Variable cross-sectional pore model to describe hydraulic conductivity and water retention behaviors of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1807-1816. DOI: 10.11779/CJGE202010005 |
[2] | CHEN Shi-hai, LIU Xiao-ming, ZHANG Zi-hua, LIN Cong-mou. Analysis of surface vibration effect on tunnel excavation section induced by tunneling blasting[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1800-1806. DOI: 10.11779/CJGE202010004 |
[3] | HUANG Da, ZHANG Xiao-jing, GU Dong-ming. Failure pattern and evolution mechanism of locking section in rock slope with three-section landslide mode[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1601-1609. DOI: 10.11779/CJGE201809005 |
[4] | LIU Wei, ZHAO Fu-yu, YANG Wen-hui, CHEN Xiao-feng. Features and properties of peaty soil in Caohai section of Anning-Sonming line[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 671-674. |
[5] | TAN Zhongsheng, YU Yu, WANG Mingnian, WANG Mengshu. Comparative tests on section steel and steel grid for loess tunnels with large section[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 628-633. |
[6] | ZHANG Aimin, HU Yifu. Anchoring effect of pressure-type anchor rods on anchored section[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 271-275. |
[7] | MING Jing, PAN Mao, QU Honggang, WU Zixing. Three-dimensional geological multi-body modeling from netlike cross-sections with topology[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1376-1382. |
[8] | LIU Dongjia. Longitudinal waves in piles with exponentially varying cross sections[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 1066-1071. |
[9] | LAI Hongpeng, XIE Yongli, YANG Xiaohua. Model test study on sectional form of highway tunnel lining[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 740-744. |
[10] | LI Xianmin, WANG Yonghe, YANG Guolin, XIAO Hongbin, FAN Zhenhui. Study on the dynamic response of transition section roadbed subject to high speed[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 100-104. |
1. |
胡南燕,黄建彬,罗斌玉,李雪雪,陈敦熙,曾子懿,付晗,娄家豪. 环氧树脂基脆性透明岩石相似材料配比试验研究. 岩土力学. 2023(12): 3471-3480 .
![]() | |
2. |
王杰,陶俊林. 内置椭球形缺陷混凝土静态劈拉试验. 成都大学学报(自然科学版). 2021(02): 207-211 .
![]() | |
3. |
王海军,乐成军,汤雷,赵初,李汉章,戚海棠. 基于3D-ILC含水平内裂纹脆性固体三点弯断裂特性研究. 岩土力学. 2021(10): 2773-2784 .
![]() | |
4. |
张志韬,王海军,汤雷,赵初,李汉章,苏正洋. 基于3D-ILC含偏心内裂纹半圆弯拉断裂特性研究. 岩土力学. 2020(01): 111-122+131 .
![]() | |
5. |
陈晓东,崔海鑫,王安良,季顺迎. 基于巴西盘试验的海冰拉伸强度研究. 力学学报. 2020(03): 625-634 .
![]() | |
6. |
王海军,郁舒阳,李汉章,任然,汤雷,朱文炜. 基于3D-ILC超声场致脆性固体单内裂纹扩展规律研究. 岩石力学与工程学报. 2020(05): 938-948 .
![]() | |
7. |
王海军,郁舒阳,汤子璇,汤雷,任然,徐进. 基于3D-ILC含60°内裂纹脆性球体Ⅰ-Ⅱ-Ⅲ型断裂研究. 岩土力学. 2020(05): 1573-1582 .
![]() | |
8. |
蔡改贫,赵小涛. 基于细观力学的矿石颗粒破碎特性研究. 应用力学学报. 2020(04): 1792-1797+1876-1877 .
![]() | |
9. |
王海军,李汉章,任然,汤雷,郁舒阳,张志韬. 基于3D-ILC三点弯脆性固体内裂纹扩展规律及破坏特征研究. 岩石力学与工程学报. 2019(12): 2463-2477 .
![]() | |
10. |
张珂,王海军,任然,汤雷,郁舒阳,刘鑫娜,顾浩. 基于3D-ILC球体45°三维双内裂纹复合断裂研究. 岩土力学. 2019(12): 4731-4739 .
![]() | |
11. |
郁舒阳,王海军,任然,汤雷,钟凌伟,张志韬,汤子璇. 基于3D-ILC单轴拉伸双平行内裂纹扩展规律研究. 岩土工程学报. 2019(12): 2367-2373 .
![]() |