• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Rui-geng, LIU Hong-jun, SHI Wei. Mechanism of residual liquefaction of silty seabed under standing waves[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1228-1237. DOI: 10.11779/CJGE202107007
Citation: HU Rui-geng, LIU Hong-jun, SHI Wei. Mechanism of residual liquefaction of silty seabed under standing waves[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1228-1237. DOI: 10.11779/CJGE202107007

Mechanism of residual liquefaction of silty seabed under standing waves

More Information
  • Received Date: October 08, 2020
  • Available Online: December 02, 2022
  • The standing waves exist when the progressive waves are reflected by the breakwater or the bank wall, which leads to the water surface oscillating where it is and the waveform doesn’t advance. Seabed soil will undergo liquefaction under standing waves, resulting in the instability of seabed foundation of marine structures. Based on the silt seabed in the Yellow River Delta of China, a series of wave flume experiments are conducted under standing waves so as to investigate the liquefaction mechanism at the antinodal section. Then, a parametric study is conducted with the proposed model to investigate the effects of the soil and wave characteristics on residual liquefaction. The results indicate that the onset of residual liquefaction is linked with cyclic stress ratio. The residual liquefaction occurs when the cyclic stress ratio χ equals the critical value χcr, and the required χcr in deeper layer is larger that of the shallow layer. The required χcr at the antinodal section is far more than that at the nodal section, and the required wave loading time is longer and the liquefaction is smaller than that at the nodal section. The horizontal transporting of pore pressure and the accumulating of plastic volumetric strain induced by cyclic normal stress contribute to the liquefaction at the antinodal section simultaneously, and the experimental results revealthat the former and the latter contribute to 54.3% and 45.7% respectively at the depth of 0.05 m. The discrepancy of the distribution pattern of the excess pore water pressure exists between the nodal section and the antinodal section. The shallower the water depth, the higher the wave steepness, and the smaller the saturability results in a deeper liquefaction depth.
  • [1]
    王小雯. 波浪作用下饱和砂质海床液化机理研究[D]. 北京: 清华大学, 2017.

    WANG Xiao-wen. Research on Mechanics of Wave-Induced Liquefaction in Saturated Sandy Seabed[D]. Beijing: Tsinghua University, 2017. (in Chinese)
    [2]
    王虎. 波浪作用下黄河三角洲粉质土海床不稳定机制研究[D]. 青岛: 中国海洋大学, 2012.

    WANG Hu. Mechanism of Wave-Induced Instability of the Silty Seabed in the Yellow River Delta[D]. Qingdao: Ocean University of China, 2012. (in Chinese)
    [3]
    TSAI C P. Wave-induced liquefaction potential in a porous seabed in front of a breakwater[J]. Ocean Engineering, 1995, 22(1): 1-18. doi: 10.1016/0029-8018(94)00042-5
    [4]
    SEKIGUCHI H, KITA K, OKAMOTO O, et al. Response of poro-elastoplastic beds to standing waves[J]. Soils and Foundations, 1995, 35(3): 31-42. doi: 10.3208/sandf.35.31
    [5]
    SASSA S, SEKIGUCHI H. Wave-induced liquefaction of beds of sand in a centrifuge[J]. Géotechnique, 1999, 49(5): 621-638. doi: 10.1680/geot.1999.49.5.621
    [6]
    JENG D S, LIN Y S. Poroelastic analysis of the wave-seabed interaction problem[J]. Computers and Geotechnics, 2000, 26(1): 43-64. doi: 10.1016/S0266-352X(99)00032-4
    [7]
    周晓智, 陈育民, 刘汉龙. 驻波作用下有限厚度海床动应力路径特性研究[J]. 岩土工程学报, 2018, 40(5): 890-899. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805017.htm

    ZHOU Xiao-zhi, CHEN Yu-min, LIU Han-long. Study on characteristics of dynamic stress path of finite-thickness seabed under standing waves[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 890-899. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805017.htm
    [8]
    ZHAO H Y, JENG D S, LIAO C C, et al. Three-dimensional modeling of wave-induced residual seabed response around a mono-pile foundation[J]. Coastal Engineering, 2017, 128: 1-21. doi: 10.1016/j.coastaleng.2017.07.002
    [9]
    JENG D S, ZHAO H Y. Two-Dimensional model for accumulation of pore pressure in marine sediments[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2015, 141(3): 04014042. doi: 10.1061/(ASCE)WW.1943-5460.0000282
    [10]
    KIRCA V S O, SUMER B M, FREDSOE J. Residual liquefaction of seabed under standing waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2013, 139(6): 489-501. doi: 10.1061/(ASCE)WW.1943-5460.0000208
    [11]
    WANG H, LIU H J, ZHANG M S. Pore pressure response of seabed in standing waves and its mechanism[J]. Coastal Engineering, 2014, 91: 213-219. doi: 10.1016/j.coastaleng.2014.06.005
    [12]
    YANG G X, YE J H. Nonlinear standing wave-induced liquefaction in loosely deposited seabed[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(1): 205-223. doi: 10.1007/s10064-017-1038-z
    [13]
    SASSA S, SEKIGUCHI H. Analysis of wave-induced liquefaction of sand beds[J]. Géotechnique, 2001, 51(2): 115-126. doi: 10.1680/geot.2001.51.2.115
    [14]
    蔡正银, 吴诗阳, 武颖利, 等. 高地震烈度区深厚覆盖砂层液化研究[J]. 岩土工程学报, 2020, 42(3): 405-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003003.htm

    CAI Zheng-yin, WU Shi-yang, WU Ying-li, et al. Liquefaction of deep overburden layers in zones with high earthquake intensity[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 405-412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003003.htm
    [15]
    SASSA S, SEKIGUCHI H. Analysis of wave-induced liquefaction of sand beds[J]. Géotechnique, 2001, 51(5): 115-126.
    [16]
    JENG D S. Soil response in cross-anisotropic seabed due to standing waves[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(1): 9-19. doi: 10.1061/(ASCE)1090-0241(1997)123:1(9)
    [17]
    ZEN K, YAMAZAKI H. Mechanism of wave-induced liquefaction and densification in seabed[J]. Soils and Foundations, 1990, 30(4): 90-104. doi: 10.3208/sandf1972.30.4_90
    [18]
    MUTLU SUMER B, HATIPOGLU F, FREDSOE J, et al. The sequence of sediment behaviour during wave-induced liquefaction[J]. Sedimentology, 2006, 53(3): 611-629. doi: 10.1111/j.1365-3091.2006.00763.x
    [19]
    MADSEN O S. Wave-induced pore pressures and effective stresses in a porous bed[J]. Géotechnique, 1978, 28(4): 377-393. doi: 10.1680/geot.1978.28.4.377
    [20]
    刘红军, 王小花, 贾永刚, 等. 黄河三角洲饱和粉土液化特性及孔压模型试验研究[J]. 岩土力学, 2005, 26(增刊2): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S2021.htm

    LIU Hong-jun, WANG Xiao-hua, JIA Yong-gang, et al. Experimental study on liquefaction properties and pore-water pressure model of saturated silt in Yellow River Delta[J]. Rock and Soil Mechanics, 2005, 26(S2): 83-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2005S2021.htm
  • Related Articles

    [1]ZHANG Zhao, CHENG Jing-xuan, LIU Feng-yin, QI Ji-lin, CHAI Jun-rui, LI Hui-yong. Variable cross-sectional pore model to describe hydraulic conductivity and water retention behaviors of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1807-1816. DOI: 10.11779/CJGE202010005
    [2]CHEN Shi-hai, LIU Xiao-ming, ZHANG Zi-hua, LIN Cong-mou. Analysis of surface vibration effect on tunnel excavation section induced by tunneling blasting[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1800-1806. DOI: 10.11779/CJGE202010004
    [3]HUANG Da, ZHANG Xiao-jing, GU Dong-ming. Failure pattern and evolution mechanism of locking section in rock slope with three-section landslide mode[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1601-1609. DOI: 10.11779/CJGE201809005
    [4]LIU Wei, ZHAO Fu-yu, YANG Wen-hui, CHEN Xiao-feng. Features and properties of peaty soil in Caohai section of Anning-Sonming line[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 671-674.
    [5]TAN Zhongsheng, YU Yu, WANG Mingnian, WANG Mengshu. Comparative tests on section steel and steel grid for loess tunnels with large section[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 628-633.
    [6]ZHANG Aimin, HU Yifu. Anchoring effect of pressure-type anchor rods on anchored section[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 271-275.
    [7]MING Jing, PAN Mao, QU Honggang, WU Zixing. Three-dimensional geological multi-body modeling from netlike cross-sections with topology[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1376-1382.
    [8]LIU Dongjia. Longitudinal waves in piles with exponentially varying cross sections[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 1066-1071.
    [9]LAI Hongpeng, XIE Yongli, YANG Xiaohua. Model test study on sectional form of highway tunnel lining[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 740-744.
    [10]LI Xianmin, WANG Yonghe, YANG Guolin, XIAO Hongbin, FAN Zhenhui. Study on the dynamic response of transition section roadbed subject to high speed[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 100-104.
  • Cited by

    Periodical cited type(11)

    1. 胡南燕,黄建彬,罗斌玉,李雪雪,陈敦熙,曾子懿,付晗,娄家豪. 环氧树脂基脆性透明岩石相似材料配比试验研究. 岩土力学. 2023(12): 3471-3480 .
    2. 王杰,陶俊林. 内置椭球形缺陷混凝土静态劈拉试验. 成都大学学报(自然科学版). 2021(02): 207-211 .
    3. 王海军,乐成军,汤雷,赵初,李汉章,戚海棠. 基于3D-ILC含水平内裂纹脆性固体三点弯断裂特性研究. 岩土力学. 2021(10): 2773-2784 .
    4. 张志韬,王海军,汤雷,赵初,李汉章,苏正洋. 基于3D-ILC含偏心内裂纹半圆弯拉断裂特性研究. 岩土力学. 2020(01): 111-122+131 .
    5. 陈晓东,崔海鑫,王安良,季顺迎. 基于巴西盘试验的海冰拉伸强度研究. 力学学报. 2020(03): 625-634 .
    6. 王海军,郁舒阳,李汉章,任然,汤雷,朱文炜. 基于3D-ILC超声场致脆性固体单内裂纹扩展规律研究. 岩石力学与工程学报. 2020(05): 938-948 .
    7. 王海军,郁舒阳,汤子璇,汤雷,任然,徐进. 基于3D-ILC含60°内裂纹脆性球体Ⅰ-Ⅱ-Ⅲ型断裂研究. 岩土力学. 2020(05): 1573-1582 .
    8. 蔡改贫,赵小涛. 基于细观力学的矿石颗粒破碎特性研究. 应用力学学报. 2020(04): 1792-1797+1876-1877 .
    9. 王海军,李汉章,任然,汤雷,郁舒阳,张志韬. 基于3D-ILC三点弯脆性固体内裂纹扩展规律及破坏特征研究. 岩石力学与工程学报. 2019(12): 2463-2477 .
    10. 张珂,王海军,任然,汤雷,郁舒阳,刘鑫娜,顾浩. 基于3D-ILC球体45°三维双内裂纹复合断裂研究. 岩土力学. 2019(12): 4731-4739 .
    11. 郁舒阳,王海军,任然,汤雷,钟凌伟,张志韬,汤子璇. 基于3D-ILC单轴拉伸双平行内裂纹扩展规律研究. 岩土工程学报. 2019(12): 2367-2373 . 本站查看

    Other cited types(0)

Catalog

    Article views (261) PDF downloads (136) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return