• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Li-ming, LIN Dan-tong, LO M-C Irene. Transport behavior of nano zero-valent iron (nZVI) in porous media[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1173-1181. DOI: 10.11779/CJGE202107001
Citation: HU Li-ming, LIN Dan-tong, LO M-C Irene. Transport behavior of nano zero-valent iron (nZVI) in porous media[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1173-1181. DOI: 10.11779/CJGE202107001

Transport behavior of nano zero-valent iron (nZVI) in porous media

More Information
  • Received Date: October 13, 2020
  • Available Online: December 02, 2022
  • The nano zero-valent iron (nZVI) has been seen as a promising material in the field of groundwater remediation. Researchers have studied the application of nZVI in in-situ remediation of groundwater. However, most of the existing studies focus on the transport of nZVI before reaching the polluted area. The transport behavior of contaminant-sorbed nZVI has not been fully studied. This study aims to illustrate the differences in the colloidal stability and motion ability of nZVI before and after phosphate adsorption is studied by sedimentation tests and one-dimensional column tests. The influences of environmental factors such as flow rate, ionic strength and porous medium characteristics on the motion ability of phosphate-sorbed nZVI (PS-nZVI) are analyzed. The results show that PS-nZVI has higher stability and mobility than nZVI, which is due to the increase of negative surface potential after phosphate adsorption. Geo-environmental conditions have great impact on the transport of PS-nZVI. Low ionic strength and high velocity are favorable for transport. The transport capacity of PS-nZVI in medium size glass beads is higher than that in fine and coarse size glass beads. PS-nZVI has higher mobility in glass beads than those in natural sand. The above experimental phenomena can be explained by the DLVO theory and various retention mechanisms of colloids in porous media, such as bridging, size exclusion and surface deposition. In the natural sand mixed with kaolinite, the mobility of PS-nZVI is very weak, and the settlement tests show that kaolinite can promote the agglomeration settlement process of PS-nZVI, which indicates that the soil layer containing kaolinite may collect PS-nZVI. The influences of contaminants and environmental factors on the mobility of nZVI should be considered in its filed application.
  • [1]
    刘松玉, 詹良通, 胡黎明, 等. 环境岩土工程研究进展[J]. 土木工程学报, 2016, 49(3): 6-30. doi: 10.15951/j.tmgcxb.2020.03.010

    LIU Song-yu, ZHAN Liang-tong, HU Li-ming, et al. Environmental geotechnics: state-of-the-art of theory, testing and application to practice[J]. China Civil Engineering Journal, 2016, 49(3): 6-30. (in Chinese) doi: 10.15951/j.tmgcxb.2020.03.010
    [2]
    YAN W, LIEN H L, KOEL B E, et al. Iron nanoparticles for environmental clean-up: recent developments and future outlook[J]. Environmental Science: Processes & Impacts, 2013, 15(1): 63-77.
    [3]
    KARN B, KUIKEN T, OTTO M. Nanotechnology and in situ remediation: a review of the benefits and potential risks[J]. Environmental Health Perspectives, 2009, 117(12): 1813-1831. doi: 10.1289/ehp.0900793
    [4]
    XIE W B, LIANG Q Q, QIAN T W, et al. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles[J]. Water Research, 2015, 70(3): 485-494.
    [5]
    DIXIT S, HERING J G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility[J]. Environmental Science & Technology, 2003, 37(18): 4182-4189.
    [6]
    LING L, ZHANG W X. Visualizing arsenate reactions and encapsulation in a single zero-valent iron nanoparticle[J]. Environmental Science & Technology, 2017, 51(4): 2288-2294.
    [7]
    TOSCO T, PAPINI M P, VIGGI C C, et al. Nanoscale zerovalent iron particles for groundwater remediation: a review[J]. Journal of Cleaner Production, 2014, 77: 10-21. doi: 10.1016/j.jclepro.2013.12.026
    [8]
    LIN D T, ZHANG Z F, HU L M. Adsorption models of groundwater remediation by nanoscale zero valent iron[C]//Proceedings of the 8th International Congress on Environmental Geotechnics, ICEG 2018, 2019, Hangzhou.
    [9]
    ZHANG W X. Nanoscale iron particles for environmental remediation: an overview[J]. Journal of Nanoparticle Research, 2003, 5(3/4): 323-332. doi: 10.1023/A:1025520116015
    [10]
    KROL M M, OLENIUK A J, KOCUR C M, et al. A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection[J]. Environmental Science & Technology, 2013, 47(13): 7332-7340.
    [11]
    温春宇. 表面修饰纳米铁在含水层的迁移机制和修复效能研究[D]. 长春: 吉林大学, 2018.

    WEN Chun-yu. Transport Mechanism and Remediaiton of Surface Modified Nanoscale Zero-Valent Iron in Aquifer[D]. Changchun: Jilin University, 2018. (in Chinese)
    [12]
    YU Z G, HU L M, LO I M C. Transport of the arsenic (As)-loaded nano zero-valent iron in groundwater-saturated sand columns: Roles of surface modification and As loading[J]. Chemosphere, 2019, 216: 428-436. doi: 10.1016/j.chemosphere.2018.10.125
    [13]
    LIN D T, BRADFORD S, HU L M, et al. Impact of phosphate adsorption on the mobility of PANI-supported nano zero-valent iron[J]. Vadose Zone Journal, 2020, 20(2): e20091.
    [14]
    BUSCH J, MEISSNER T, POTTHOFF A, et al. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater[J]. Journal of Contaminant Hydrology, 2015, 181: 59-68. doi: 10.1016/j.jconhyd.2015.03.009
    [15]
    LIN D, HU L M, BRADFORD S A, et al. Simulation of colloid transport and retention using a pore-network model with roughness and chemical heterogeneity on pore surfaces[J]. Water Resources Research, 2021, 57(2): 028571.
    [16]
    TORKZABAN S, BRADFORD S A, VANDERZALM J L, et al. Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity[J]. Journal of Contaminant Hydrology, 2015, 181: 161-171. doi: 10.1016/j.jconhyd.2015.06.005
    [17]
    SUN Y Y, GAO B, BRADFORD S A, et al. Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size[J]. Water Research, 2015, 68: 24-33. doi: 10.1016/j.watres.2014.09.025
    [18]
    DUAN R Q, DONG Y H, ZHANG Q. Characteristics of aggregate size distribution of nanoscale zero-valent iron in aqueous suspensions and its effect on transport process in porous media[J]. Water, 2018, 10(6): 670. doi: 10.3390/w10060670
    [19]
    BRADFORD S A, TORKZABAN S. Colloid transport and retention in unsaturated porous media: a review of interface-, collector-, and pore-scale processes and models[J]. Vadose Zone Journal, 2008, 7(2): 667-681. doi: 10.2136/vzj2007.0092
    [20]
    SEN T K, KHILAR K C. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media[J]. Advances in Colloid and Interface Science, 2006, 119(2/3): 71-96.
    [21]
    KHILAR K C, FOGLER H S. Migrations of Fines in Porous Media[M]. Dordrecht: Springer Netherlands, 1998.
    [22]
    BRADFORD S A, TORKZABAN S. Determining parameters and mechanisms of colloid retention and release in porous media[J]. Langmuir, 2015, 31(44): 12096-12105. doi: 10.1021/acs.langmuir.5b03080
    [23]
    陈星欣, 白冰, 于涛, 等. 粒径和渗流速度对多孔介质中悬浮颗粒迁移和沉积特性的耦合影响[J]. 岩石力学与工程学报, 2013, 32(增刊1): 2840-2845. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1033.htm

    CHEN Xing-xin, BAI Bing, YU Tao, et al. Coupled effects of particle size and flow rate on characteristics of particle transportation and deposition in porous media[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2840-2845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1033.htm
    [24]
    BRADFORD S A, TORKZABAN S, WALKER S L. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media[J]. Water Research, 2007, 41(13): 3012-3024. doi: 10.1016/j.watres.2007.03.030
    [25]
    DE ZWART A H. Investigation of Clogging Processes in Unconsolidated Aquifers Near Water Supply Wells[D]. Delft: Technische Universiteit Delft, 2007.
    [26]
    LIN D T, HU L M, LO I M C, et al. Size distribution and phosphate removal capacity of nano zero-valent iron (nZVI): influence of pH and ionic strength[J]. Water, 2020, 12(10): 2939. doi: 10.3390/w12102939
    [27]
    BHAUMIK M, NOUBACTEP C, GUPTA V K, et al. Polyaniline/Fe0 composite nanofibers: an excellent adsorbent for the removal of arsenic from aqueous solutions[J]. Chemical Engineering Journal, 2015, 271: 135-146. doi: 10.1016/j.cej.2015.02.079
    [28]
    PHENRAT T, SALEH N, SIRK K, et al. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions[J]. Environmental Science & Technology, 2007, 41(1): 284-290.
    [29]
    DOROBANTU L S, BHATTACHARJEE S, FOGHT J M, et al. Analysis of force interactions between AFM tips and hydrophobic bacteria using DLVO theory[J]. Langmuir, 2009, 25(12): 6968-6976. doi: 10.1021/la9001237
    [30]
    DE VICENTE J, DELGADO A V, PLAZA R C, et al. Stability of cobalt ferrite colloidal particles. effect of ph and applied magnetic fields[J]. Langmuir, 2000, 16(21): 7954-7961. doi: 10.1021/la0003490
    [31]
    ADRIAN Y F, SCHNEIDEWIND U, BRADFORD S A, et al. Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material[J]. Environmental Pollution, 2018, 236: 195-207. doi: 10.1016/j.envpol.2018.01.011
    [32]
    PHENRAT T, SALEH N, SIRK K, et al. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation[J]. Journal of Nanoparticle Research, 2008, 10(5): 795-814. doi: 10.1007/s11051-007-9315-6
    [33]
    HOGG R, HEALY T W, FUERSTENAU D W. Mutual coagulation of colloidal dispersions[J]. Transactions of the Faraday Society, 1966, 62: 1638-1651. doi: 10.1039/tf9666201638
    [34]
    TOSCO T, BOSCH J, MECKENSTOCK R U, et al. Transport of ferrihydrite nanoparticles in saturated porous media: role of ionic strength and flow rate[J]. Environmental Science and Technology, 2012, 46(7): 4008-4015. doi: 10.1021/es202643c
    [35]
    KIM H J, PHENRAT T, TILTON R D, et al. Effect of kaolinite, silica fines and pH on transport of polymer- modified zero valent iron nano-particles in heterogeneous porous media[J]. Journal of Colloid & Interface Science, 2012, 370(1): 1-10.
    [36]
    TUFENKJI N, ELIMELECH M. Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities[J]. Langmuir, 2005, 21(3): 841-852. doi: 10.1021/la048102g
    [37]
    TUFENKJI N, REDMAN J A, ELIMELECH M. Interpreting deposition patterns of microbial particles in laboratory-scale column experiments[J]. Environmental Science & Technology, 2003, 37(3): 616-623.
    [38]
    BRADFORD S A, SIMUNEK J, BETTAHAR M, et al. Significance of straining in colloid deposition: evidence and implications[J]. Water Resources Research, 2006, 42(12): W12S15.
    [39]
    CHATTERJEE J, GUPTA S K. An agglomeration-based model for colloid filtration[J]. Environmental Science & Technology, 2009, 43(10): 3694-3699.
    [40]
    白冰, 张鹏远, 宋晓明, 等. 渗透作用下多孔介质中悬浮颗粒的迁移过程研究[J]. 岩土工程学报, 2015, 37(10): 1786-1793. doi: 10.11779/CJGE201510006

    BAI Bing, ZHANG Peng-yuan, SONG Xiao-ming, et al. Transport processes of suspended particles in saturated porous media by column seepage tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1786-1793. (in Chinese) doi: 10.11779/CJGE201510006
    [41]
    BRADFORD S A, TORKZABAN S, WIEGMANN A. Pore-Scale simulations to determine the applied hydrodynamic torque and colloid immobilization[J]. Vadose Zone Journal, 2011, 10(1): 252-261. doi: 10.2136/vzj2010.0064
    [42]
    KERMANI M S, JAFARI S, RAHNAMA M, et al. Direct pore scale numerical simulation of colloid transport and retention. part I: fluid flow velocity, colloid size, and pore structure effects[J]. Advances in Water Resources, 2020, 144: 103694. doi: 10.1016/j.advwatres.2020.103694
    [43]
    IBRAHIM H M, AWAD M, AL-FARRAJ A S, et al. Stability and dynamic aggregation of bare and stabilized Zero-Valent iron nanoparticles under variable solution chemistry[J]. Nanomaterials, 2020, 10(2): 192. doi: 10.3390/nano10020192
    [44]
    张鹏远, 白冰, 蒋思晨. 孔隙结构和水动力对饱和多孔介质中颗粒迁移和沉积特性的耦合影响[J]. 岩土力学, 2016, 37(5): 1307-1316. doi: 10.16285/j.rsm.2016.05.012

    ZHANG Peng-yuan, BAI Bing, JIANG Si-chen. Coupled effects of hydrodynamic forces and pore structure on suspended particle transport and deposition in a saturated porous medium[J]. Rock and Soil Mechanics, 2016, 37(5): 1307-1316. (in Chinese) doi: 10.16285/j.rsm.2016.05.012
  • Cited by

    Periodical cited type(7)

    1. 涂义亮,李军,方忠,周成涛,张立舟. 土石混合料剪切力学特性的精细化离散元分析. 铁道工程学报. 2024(09): 22-29 .
    2. 董建鹏,李辉. 黄土颗粒流宏细观对应关系与参数标定方法研究. 水利水电技术(中英文). 2022(04): 180-191 .
    3. 郭宇,迟世春,米晓飞. 粗粒土颗粒强度和弹性力学参数的试验研究. 岩土工程学报. 2021(09): 1675-1681 . 本站查看
    4. 王晋伟,迟世春,邵晓泉,赵飞翔. 正交–等值线法在堆石料细观参数标定中的应用. 岩土工程学报. 2020(10): 1867-1875 . 本站查看
    5. 卢一为,程展林,潘家军,江洎洧,徐晗. 筑坝堆石料力学特性试验等效密度确定方法研究. 岩土工程学报. 2020(S1): 75-79 . 本站查看
    6. 郭林林,别社安,寇军,张炜煌. 重力式码头抛石基床压缩特性和变形参数试验研究. 水利学报. 2019(04): 524-533 .
    7. 任秋兵,李明超,杜胜利,刘承照. 筑坝堆石料抗剪强度间接测定模型与实用计算公式研究. 水利学报. 2019(10): 1200-1213 .

    Other cited types(11)

Catalog

    Article views (336) PDF downloads (233) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return