Citation: | ZHENG Xin-jiang, XU Yong-fu. Strength characteristics of GMZ bentonite saturated with salt solutions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 783-788. DOI: 10.11779/CJGE202104022 |
[1] |
KIMURA S, NAKAMURA S, VITHANA S B, et al. Shearing rate effect on residual strength of landslide soils in the slow rate range[J]. Landslides, 2014, 11: 969-979. doi: 10.1007/s10346-013-0457-6
|
[2] |
WANG J. High-level radioactive waste disposal in China: update 2010[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(1): 1-11.
|
[3] |
BOLT G H. Physico-chemical analysis of the compressibility of pure clays[J]. Géotechnique, 1956, 6(2): 86-93. doi: 10.1680/geot.1956.6.2.86
|
[4] |
SRIDHARAN A, RAO V G. Mechanisms controlling volume change of saturated clays and the role of the effective stress concept[J]. Géotechnique, 1973, 23(3): 359-382. doi: 10.1680/geot.1973.23.3.359
|
[5] |
BARBOUR S L, FREDLUND D G. Mechanisms of osmotic flow and volume change in clay soils[J]. Canadian Geotechnical Journal, 1989, 26(4): 551-562. doi: 10.1139/t89-068
|
[6] |
GREENBERG J A, MITCHELL J K, WITHERSPOON P A. Coupled salt and water flows in a groundwater basin[J]. Journal of Geophysical Research, 1973, 78: 6341-6353. doi: 10.1029/JC078i027p06341
|
[7] |
FERNANDEZ F, QUIGLEY R M. Controlling the destructive effects of clay-organic liquid interactions by application of effective stress[J]. Canadian Geotechnical Journal, 1991, 28: 388-398. doi: 10.1139/t91-049
|
[8] |
MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. 3rd ed. New York: Wiley, 2005.
|
[9] |
SUN D A, ZHANG J Y, ZHANG J, et al. Swelling characteristics of GMZ bentonite and its mixtures with sand[J]. Applied Clay Science, 2013, 83: 224-230.
|
[10] |
SRIDHARAN A, PRAKASH K. Mechanisms controlling the undrained shear strength behaviour of clays[J]. Canadian Geotechnical Journal, 1999, 36: 1030-1038. doi: 10.1139/t99-071
|
[11] |
DUECK A, BÖRGESSON L. Thermo-mechanically induced brittleness in compacted bentonite investigated by unconfined compression tests[J]. Engineering Geology, 2015, 193: 305-309. doi: 10.1016/j.enggeo.2015.05.005
|
[12] |
DI MAIO C, SCARINGI G. Shear displacements induced by decrease in pore solution concentration on a pre-existing slip surface[J]. Engineering Geology, 2016, 200: 1-9. doi: 10.1016/j.enggeo.2015.11.007
|
[13] |
HUECKEL T. Chemo-plasticity of clays subjected to flow of a single contaminant and stress[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(1): 43-72. doi: 10.1002/(SICI)1096-9853(199701)21:1<43::AID-NAG858>3.0.CO;2-1
|
[14] |
MAIO D C. Shear strength of clays and clayey soils: the influence of pore fluid composition[J]. CISM Courses and Lectures, 2004, 462: 45-55.
|
[15] |
MAIO D C. Exposure of bentonite to salt solution: osmotic and mechanical effects[J]. Géotechnique, 1996, 46(4): 695-707. doi: 10.1680/geot.1996.46.4.695
|
[16] |
于海浩, 韦昌富, 颜荣涛, 等. 孔隙溶液浓度的变化对黏土强度的影响[J]. 岩土工程学报, 2015, 37(3): 564-569. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503027.htm
YU Hai-hao, WEI Chang-fu, YAN Rong-tao, et al. Effects of pore solution concentrations on shear strength of clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 564-569. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503027.htm
|
[17] |
SPAGNOLI G, FERNANDEZ-STEEGER T, FEINENDEGEN M, et al. The influence of the dielectric constant and electrolyte concentration of the pore fluids on the undrained shear of smecite[J]. Soils and Foundations, 2010, 50(5): 757-763. doi: 10.3208/sandf.50.757
|
[18] |
姚传芹, 韦昌富, 马田田, 等. 孔隙溶液对膨胀土力学性质影响[J]. 岩土力学, 2017, 38(2): 116-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2016.htm
YAO Chuan-qin, WEI Chang-fu, MA Tian-tian, et al. Effects of pore solution on mechanical properties of expansive soil[J]. Rock and Soil Mechanics, 2017, 38(2): 116-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2016.htm
|
[19] |
ANSON R W, HAWKINS A B. The effect of calcium ions in pore water on residual shear strength of kaolinite and sodium montmorillonite[J]. Géotechnique, 1998, 48(6): 787-800. doi: 10.1680/geot.1998.48.6.787
|
[20] |
ZHANG L, SUN D A, JIA D. Shear strength of GMZ07 bentonite and its mixture with sand saturated with saline solution[J]. Applied Clay Science, 2016, 132: 24-32.
|
[21] |
徐永福. 考虑渗透吸力影响膨润土的修正有效应力及其验证[J]. 岩土工程学报, 2019, 41(4): 631-638. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904006.htm
XU Yong-fu. Modified effective stress induced by osmotic suction and its validation in volume change and shear strength of bentonite in saline solutions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 631-638. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904006.htm
|
[22] |
李晓月, 徐永福. 盐溶液中膨润土膨胀变形的计算方法[J]. 岩土工程学报, 2019, 41(12): 2353-2359. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912030.htm
LI Xiao-yue, XU Yong-fu. Method for calculating swelling deformation of bentonite in salt solution[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2353-2359. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912030.htm
|
[23] |
李晓月, 徐永福. 盐溶液中膨润土峰值剪切强度的计算方法[J]. 岩土工程学报, 2019, 41(5): 885-891. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905014.htm
LI Xiao-yue, XU Yong-fu. Calculation of peak shear strength of bentonite in salt solutions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 885-891. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905014.htm
|
[24] |
张龙. 高庙子膨润土力学和化学特性及预测[D]. 上海: 上海大学, 2018.
ZHANG Long. Chemical and Mechanical Behaviour of GMZ Bentonite and Its Predictions[D]. Shanghai: University of Shanghai, 2018. (in Chinese)
|
[25] |
SRIDHARAN A, RAO V G. Shear strength behaviour of saturated clays and the role of the effective stress concept[J]. Géotechnique, 1979, 29(2): 177-193.
|
[26] |
LIU L, MORENO L, NERETNIEKS I. A dynamic force balance model for colloid expansion and its DLVO-Based application[J]. Langmuir, 2009, 25: 679-687.
|
[27] |
贾景超. 膨胀土膨胀机理及细观膨胀模型研究[D]. 大连: 大连理工大学, 2010.
JIA Jing-chao. Study on the Swelling Mechanism and Mesomechanical Swelling Model of Expansive Soil[D]. Dalian: Dalian University of Technology, 2010. (in Chinese)
|
[28] |
RAO S M, THYAGARAJ T. Swell-compression behaviour of compacted clays under chemical gradients[J]. Canadian Geotechnical Journal, 2007, 44(5): 520-532.
|
[29] |
NEUZIL C E. Osmotic generation of ‘anomalous’ fluid pressure in geological environments[J]. Nature, 2000, 403: 182-184.
|
[30] |
KEIJZER T H J S, LOCH J P G. Chemical osmosis in compacted dredging sludge[J]. Soil Science Society of America Journal, 2000, 65, 1045-1055.
|
[31] |
MANASSERO M, DOMINIJANNI A. Modelling the osmosis effect on solute migration through porous media[J]. Géotechnique, 2003, 53, 481-492.
|
[32] |
CHEN G J, GALLIPOLI D, LEDESMA A. Chemo-hydro- mechanical coupled consolidation for a poroelastic clay buffer in a radioactive waste repository[J]. Transportation in Porous Media, 2007, 69: 189-213.
|
[33] |
GOUY G. The constitution of the electric charge on the surface of an electrolyte[J]. Annales de Physique, 1910, 9: 457-68. (in French)
|
[34] |
KARNLAND O, MUURINEN A, KARLSSON F. Advances in Understanding Engineered Clay Barriers[M]. Netherlands: Balkema, 2005.
|
[35] |
XU Y F. Peak shear strength of compacted GMZ bentonites in saline solution[J]. Engineering Geology, 2019, 251: 93-99.
|
[36] |
李晓月, 徐永福. 盐溶液的渗透吸力计算方法[J]. 地质力学学报, 2018, 24(5): 723-729. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201805016.htm
LI Xiao-yue, XU Yong-fu. The calculation method for osmotic suction of saline solution[J]. Journal of Geomechanics, 2018, 24(5): 723-729. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201805016.htm
|
[37] |
项国圣. 含盐环境中膨润土的膨胀理论及膨胀衰减机理研究[D]. 上海: 上海交通大学, 2015.
XIANG Guo-sheng. Theory of Swelling Properties and Mechanism on Swell Attenuation of Bentonite in Salt Solution[D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese)
|
[38] |
XU Y F, XIANG G S, JIANG H, et al. Role of osmotic suction in volume change of clays in salt solution[J]. Applied Clay Science, 2014, 101: 354-361.
|
[1] | CHEN Rong, WU Zhiyong, HAO Dongxue, GAO Yucong. Evolution rules and effects of particle breakage for quartz sand in triaxial shear tests under high pressures[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1713-1722. DOI: 10.11779/CJGE20220647 |
[2] | LUO Ming-xing, ZHANG Ji-ru, LIU Xiao-xuan. Dilatancy behaviors and equation of calcareous sand considering stress path and particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1453-1462. DOI: 10.11779/CJGE202108010 |
[3] | WANG Zhao-nan, WANG Gang, YE Qin-guo, YIN Hao. Particle breakage model for coral sand under triaxial compression stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 540-546. DOI: 10.11779/CJGE202103017 |
[4] | ZHANG Ji-ru, HUA Chen, LUO Ming-xing, ZHANG Bi-wen. Behavior of particle breakage in calcareous sand during drained triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1593-1602. DOI: 10.11779/CJGE202009003 |
[5] | WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. DOI: 10.11779/CJGE201904020 |
[6] | WANG Yuan, ZHANG Sheng, AO Da-hua, YU Yu-zhen, SUN Xun. Particle breakage characteristics of rockfills under complex stress paths[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 698-706. DOI: 10.11779/CJGE201804014 |
[7] | CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei, HUANG Ying-hao. Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. DOI: 10.11779/CJGE201605019 |
[8] | JIA Yu-feng, WANG Bing-shen, CHI Shi-chun. Particle breakage of rockfill during triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1692-1697. DOI: 10.11779/CJGE201509018 |
[9] | LIU Meng-cheng, GAO Yu-feng, LIU Han-long. Effect of particle breakage on strength and deformation of modeled rockfills[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1691-1800. |
[10] | WEI Song, ZHU Jungao, QIAN Qihu, LI Fan. Particle breakage of coarse-grained materials in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 533-538. |