• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHENG Xin-jiang, XU Yong-fu. Strength characteristics of GMZ bentonite saturated with salt solutions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 783-788. DOI: 10.11779/CJGE202104022
Citation: ZHENG Xin-jiang, XU Yong-fu. Strength characteristics of GMZ bentonite saturated with salt solutions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 783-788. DOI: 10.11779/CJGE202104022

Strength characteristics of GMZ bentonite saturated with salt solutions

More Information
  • Received Date: June 22, 2020
  • Available Online: December 04, 2022
  • Bentonite is selected as a buffer and backfill material for deep geological repositories due to its high expansibility, low permeability, and excellent nuclide adsorptive. In order to study the effect of the pore solution of the surrounding rock on the strength of bentonite, GMZ07 bentonite specimens are saturated and consolidated in Na2SO4 solution with different concentrations for direct shear tests. The test results show that as the concentration of the salt solution increases, the cohesive intercept and internal friction angle of the bentonite sample increase, and the strength increases significantly. Based on the fractal model for bentonite surface, the modified effective stress that considers the osmotic suction is introduced to explain the test results. The shear strength of GMZ07 bentonite in Na2SO4 solution calculated by the modified effective stress is compared with the measured value, and the two are basically in agreement, which verifies the correctness of the modified effective stress considering the osmotic suction.
  • [1]
    KIMURA S, NAKAMURA S, VITHANA S B, et al. Shearing rate effect on residual strength of landslide soils in the slow rate range[J]. Landslides, 2014, 11: 969-979. doi: 10.1007/s10346-013-0457-6
    [2]
    WANG J. High-level radioactive waste disposal in China: update 2010[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(1): 1-11.
    [3]
    BOLT G H. Physico-chemical analysis of the compressibility of pure clays[J]. Géotechnique, 1956, 6(2): 86-93. doi: 10.1680/geot.1956.6.2.86
    [4]
    SRIDHARAN A, RAO V G. Mechanisms controlling volume change of saturated clays and the role of the effective stress concept[J]. Géotechnique, 1973, 23(3): 359-382. doi: 10.1680/geot.1973.23.3.359
    [5]
    BARBOUR S L, FREDLUND D G. Mechanisms of osmotic flow and volume change in clay soils[J]. Canadian Geotechnical Journal, 1989, 26(4): 551-562. doi: 10.1139/t89-068
    [6]
    GREENBERG J A, MITCHELL J K, WITHERSPOON P A. Coupled salt and water flows in a groundwater basin[J]. Journal of Geophysical Research, 1973, 78: 6341-6353. doi: 10.1029/JC078i027p06341
    [7]
    FERNANDEZ F, QUIGLEY R M. Controlling the destructive effects of clay-organic liquid interactions by application of effective stress[J]. Canadian Geotechnical Journal, 1991, 28: 388-398. doi: 10.1139/t91-049
    [8]
    MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. 3rd ed. New York: Wiley, 2005.
    [9]
    SUN D A, ZHANG J Y, ZHANG J, et al. Swelling characteristics of GMZ bentonite and its mixtures with sand[J]. Applied Clay Science, 2013, 83: 224-230.
    [10]
    SRIDHARAN A, PRAKASH K. Mechanisms controlling the undrained shear strength behaviour of clays[J]. Canadian Geotechnical Journal, 1999, 36: 1030-1038. doi: 10.1139/t99-071
    [11]
    DUECK A, BÖRGESSON L. Thermo-mechanically induced brittleness in compacted bentonite investigated by unconfined compression tests[J]. Engineering Geology, 2015, 193: 305-309. doi: 10.1016/j.enggeo.2015.05.005
    [12]
    DI MAIO C, SCARINGI G. Shear displacements induced by decrease in pore solution concentration on a pre-existing slip surface[J]. Engineering Geology, 2016, 200: 1-9. doi: 10.1016/j.enggeo.2015.11.007
    [13]
    HUECKEL T. Chemo-plasticity of clays subjected to flow of a single contaminant and stress[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(1): 43-72. doi: 10.1002/(SICI)1096-9853(199701)21:1<43::AID-NAG858>3.0.CO;2-1
    [14]
    MAIO D C. Shear strength of clays and clayey soils: the influence of pore fluid composition[J]. CISM Courses and Lectures, 2004, 462: 45-55.
    [15]
    MAIO D C. Exposure of bentonite to salt solution: osmotic and mechanical effects[J]. Géotechnique, 1996, 46(4): 695-707. doi: 10.1680/geot.1996.46.4.695
    [16]
    于海浩, 韦昌富, 颜荣涛, 等. 孔隙溶液浓度的变化对黏土强度的影响[J]. 岩土工程学报, 2015, 37(3): 564-569. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503027.htm

    YU Hai-hao, WEI Chang-fu, YAN Rong-tao, et al. Effects of pore solution concentrations on shear strength of clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 564-569. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503027.htm
    [17]
    SPAGNOLI G, FERNANDEZ-STEEGER T, FEINENDEGEN M, et al. The influence of the dielectric constant and electrolyte concentration of the pore fluids on the undrained shear of smecite[J]. Soils and Foundations, 2010, 50(5): 757-763. doi: 10.3208/sandf.50.757
    [18]
    姚传芹, 韦昌富, 马田田, 等. 孔隙溶液对膨胀土力学性质影响[J]. 岩土力学, 2017, 38(2): 116-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2016.htm

    YAO Chuan-qin, WEI Chang-fu, MA Tian-tian, et al. Effects of pore solution on mechanical properties of expansive soil[J]. Rock and Soil Mechanics, 2017, 38(2): 116-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2016.htm
    [19]
    ANSON R W, HAWKINS A B. The effect of calcium ions in pore water on residual shear strength of kaolinite and sodium montmorillonite[J]. Géotechnique, 1998, 48(6): 787-800. doi: 10.1680/geot.1998.48.6.787
    [20]
    ZHANG L, SUN D A, JIA D. Shear strength of GMZ07 bentonite and its mixture with sand saturated with saline solution[J]. Applied Clay Science, 2016, 132: 24-32.
    [21]
    徐永福. 考虑渗透吸力影响膨润土的修正有效应力及其验证[J]. 岩土工程学报, 2019, 41(4): 631-638. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904006.htm

    XU Yong-fu. Modified effective stress induced by osmotic suction and its validation in volume change and shear strength of bentonite in saline solutions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 631-638. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904006.htm
    [22]
    李晓月, 徐永福. 盐溶液中膨润土膨胀变形的计算方法[J]. 岩土工程学报, 2019, 41(12): 2353-2359. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912030.htm

    LI Xiao-yue, XU Yong-fu. Method for calculating swelling deformation of bentonite in salt solution[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2353-2359. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912030.htm
    [23]
    李晓月, 徐永福. 盐溶液中膨润土峰值剪切强度的计算方法[J]. 岩土工程学报, 2019, 41(5): 885-891. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905014.htm

    LI Xiao-yue, XU Yong-fu. Calculation of peak shear strength of bentonite in salt solutions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 885-891. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905014.htm
    [24]
    张龙. 高庙子膨润土力学和化学特性及预测[D]. 上海: 上海大学, 2018.

    ZHANG Long. Chemical and Mechanical Behaviour of GMZ Bentonite and Its Predictions[D]. Shanghai: University of Shanghai, 2018. (in Chinese)
    [25]
    SRIDHARAN A, RAO V G. Shear strength behaviour of saturated clays and the role of the effective stress concept[J]. Géotechnique, 1979, 29(2): 177-193.
    [26]
    LIU L, MORENO L, NERETNIEKS I. A dynamic force balance model for colloid expansion and its DLVO-Based application[J]. Langmuir, 2009, 25: 679-687.
    [27]
    贾景超. 膨胀土膨胀机理及细观膨胀模型研究[D]. 大连: 大连理工大学, 2010.

    JIA Jing-chao. Study on the Swelling Mechanism and Mesomechanical Swelling Model of Expansive Soil[D]. Dalian: Dalian University of Technology, 2010. (in Chinese)
    [28]
    RAO S M, THYAGARAJ T. Swell-compression behaviour of compacted clays under chemical gradients[J]. Canadian Geotechnical Journal, 2007, 44(5): 520-532.
    [29]
    NEUZIL C E. Osmotic generation of ‘anomalous’ fluid pressure in geological environments[J]. Nature, 2000, 403: 182-184.
    [30]
    KEIJZER T H J S, LOCH J P G. Chemical osmosis in compacted dredging sludge[J]. Soil Science Society of America Journal, 2000, 65, 1045-1055.
    [31]
    MANASSERO M, DOMINIJANNI A. Modelling the osmosis effect on solute migration through porous media[J]. Géotechnique, 2003, 53, 481-492.
    [32]
    CHEN G J, GALLIPOLI D, LEDESMA A. Chemo-hydro- mechanical coupled consolidation for a poroelastic clay buffer in a radioactive waste repository[J]. Transportation in Porous Media, 2007, 69: 189-213.
    [33]
    GOUY G. The constitution of the electric charge on the surface of an electrolyte[J]. Annales de Physique, 1910, 9: 457-68. (in French)
    [34]
    KARNLAND O, MUURINEN A, KARLSSON F. Advances in Understanding Engineered Clay Barriers[M]. Netherlands: Balkema, 2005.
    [35]
    XU Y F. Peak shear strength of compacted GMZ bentonites in saline solution[J]. Engineering Geology, 2019, 251: 93-99.
    [36]
    李晓月, 徐永福. 盐溶液的渗透吸力计算方法[J]. 地质力学学报, 2018, 24(5): 723-729. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201805016.htm

    LI Xiao-yue, XU Yong-fu. The calculation method for osmotic suction of saline solution[J]. Journal of Geomechanics, 2018, 24(5): 723-729. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201805016.htm
    [37]
    项国圣. 含盐环境中膨润土的膨胀理论及膨胀衰减机理研究[D]. 上海: 上海交通大学, 2015.

    XIANG Guo-sheng. Theory of Swelling Properties and Mechanism on Swell Attenuation of Bentonite in Salt Solution[D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese)
    [38]
    XU Y F, XIANG G S, JIANG H, et al. Role of osmotic suction in volume change of clays in salt solution[J]. Applied Clay Science, 2014, 101: 354-361.
  • Related Articles

    [1]CHEN Rong, WU Zhiyong, HAO Dongxue, GAO Yucong. Evolution rules and effects of particle breakage for quartz sand in triaxial shear tests under high pressures[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1713-1722. DOI: 10.11779/CJGE20220647
    [2]LUO Ming-xing, ZHANG Ji-ru, LIU Xiao-xuan. Dilatancy behaviors and equation of calcareous sand considering stress path and particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1453-1462. DOI: 10.11779/CJGE202108010
    [3]WANG Zhao-nan, WANG Gang, YE Qin-guo, YIN Hao. Particle breakage model for coral sand under triaxial compression stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 540-546. DOI: 10.11779/CJGE202103017
    [4]ZHANG Ji-ru, HUA Chen, LUO Ming-xing, ZHANG Bi-wen. Behavior of particle breakage in calcareous sand during drained triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1593-1602. DOI: 10.11779/CJGE202009003
    [5]WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. DOI: 10.11779/CJGE201904020
    [6]WANG Yuan, ZHANG Sheng, AO Da-hua, YU Yu-zhen, SUN Xun. Particle breakage characteristics of rockfills under complex stress paths[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 698-706. DOI: 10.11779/CJGE201804014
    [7]CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei, HUANG Ying-hao. Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. DOI: 10.11779/CJGE201605019
    [8]JIA Yu-feng, WANG Bing-shen, CHI Shi-chun. Particle breakage of rockfill during triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1692-1697. DOI: 10.11779/CJGE201509018
    [9]LIU Meng-cheng, GAO Yu-feng, LIU Han-long. Effect of particle breakage on strength and deformation of modeled rockfills[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1691-1800.
    [10]WEI Song, ZHU Jungao, QIAN Qihu, LI Fan. Particle breakage of coarse-grained materials in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 533-538.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return