• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Guang-qing, ZUO Zheng, LIU Ying, WANG Zhi-jie, WANG He, YU Fan. Experimental investigations on tensile mechanical properties of geocell strips[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 760-767. DOI: 10.11779/CJGE202104019
Citation: YANG Guang-qing, ZUO Zheng, LIU Ying, WANG Zhi-jie, WANG He, YU Fan. Experimental investigations on tensile mechanical properties of geocell strips[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 760-767. DOI: 10.11779/CJGE202104019

Experimental investigations on tensile mechanical properties of geocell strips

More Information
  • Received Date: June 28, 2020
  • Available Online: December 04, 2022
  • The geocell is a new type of three-dimensional reinforced geotechnical material to restrain the lateral deformation of the soil to enhance the bearing capacity of structure and reduce its deformation. At present, the worldwide investigations on geocells are mainly focused on their engineering applications and reinforcement mechanism, while limited investigations are conducted on themselves, especially the tensile mechanical properties of the strips. The uniaxial tensile tests are conducted on the geocell strips made from high-density polyethylene (HDPE), polypropylene (PP) and polyester (PET). The effects of the shapes (Type I-dumbbell, Type II-rectangular) and sizes (Type II-rectangular, Type III-rectangular) of the specimens on the strength and deformation characteristics of geocell strips are studied, and the micro-analysis on the failure geocell strips is performed. It is determined that the elongation rates of the HDPE, PP and PET geocell strips are sensitive to the specimen shape. The elongation of Type I-dumbbell is smaller than that of Type II-rectangular. The shape and size of the specimens have some effects on the strength of the HDPE geocell strips. The strengths of PP and PET geocell strips are greatly affected by the specimen shape. The tensile strength of Type I-dumbbell is smaller than that of Type II-rectangular. The fractured surface of HDPE geocell has rough surface and obvious plastic yield deformation. The microfibril bundles on the fractured surface of the PP geocell are neatly arranged, and the microfibrils are randomly distributed. The fractured surface of PET geocell is smooth. The test results can provide reference for the study on reinforcement mechanism of the geocells.
  • [1]
    BIABANI M M, INDRARATNA B, NIMBALKAR S. Behaviour of geocell reinforced sub-ballast under cyclic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(1): 109-119.
    [2]
    孙州, 张孟喜, 姜圣卫. 条形荷载下土工格室加筋砂土路堤模型试验研究[J]. 岩土工程学报, 2015, 37(增刊2): 170-175. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2034.htm

    SUN Zhou, ZHANG Meng-xi, JIANG Sheng-wei. Model tests on sand embankment reinforced with geocell subjected to strip loading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 170-175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2034.htm
    [3]
    NETO J O A. Application of the two-layer system theory to calculate the settlements and vertical stress propagation in soil reinforcement with geocell[J]. Geotextiles and Geomembranes, 2019, 47(1): 32-41. doi: 10.1016/j.geotexmem.2018.09.003
    [4]
    IMAN M, MAHMOUD G, REZA Z. Stability analysis of geocell-reinforced slopes using the limit equilibrium horizontal slice method[J]. International Journal of Geomechanics, 2017, 17(9): 06017007. doi: 10.1061/(ASCE)GM.1943-5622.0000935
    [5]
    SONG F, LIU H, MA L, et al. Numerical analysis of geocell-reinforced retaining wall failure modes[J]. Geotextiles and Geomembranes, 2018, 46(3): 284-296. doi: 10.1016/j.geotexmem.2018.01.004
    [6]
    刘蓓蓓, 张孟喜, 王东. 基于强度折减法的土工格室加筋路堤稳定性分析[J]. 上海大学学报(自然科学版), 2018, 24(2): 287-295. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201802016.htm

    LIU Bei-bei, ZHANG Meng-xi, WANG Dong. Stability analysis of geocell reinforced embankment with strength reduction method[J]. Journal of Shanghai University(Natural Science Edition), 2018, 24(2): 287-295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201802016.htm
    [7]
    彭艾鑫, 张孟喜, 朱华超. 高强土工格室加筋砂土性状的三轴试验[J]. 上海大学学报(自然科学版), 2017, 23(4): 590-599. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201704013.htm

    PENG Ai-xin, ZHANG Meng-xi, ZHU Hua-chao. Triaxial test of high strength geocell reinforced soil[J]. Journal of Shanghai University (Natural Science Edition), 2017, 23(4): 590-599. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201704013.htm
    [8]
    赵明华, 陈大兴, 刘猛, 等. 考虑土拱效应影响的路堤荷载下土工格室加筋体变形分析[J]. 岩土工程学报, 2020, 42(4): 601-609. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004003.htm

    ZHAO Ming-hua, CHEN Da-xing, LIU Meng, et al. Deformation analysis of geocell-reinforced body under embankment load considering soil arch effect[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 601-609. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004003.htm
    [9]
    高昂, 张孟喜, 刘芳, 等. 分级循环荷载下土工格室加筋路堤模型试验研究[J]. 岩土力学, 2016, 37(8): 2213-2221. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608012.htm

    GAO Ang, ZHANG Meng-xi, LIU Fang, et al. Model experimental study of embankment reinforced with geocells under stepped cyclic loading[J]. Rock and Soil Mechanics, 2016, 37(8): 2213-2221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608012.htm
    [10]
    晏长根, 顾良军, 杨晓华, 等. 土工格室加筋黄土的三轴剪切性能[J]. 中国公路学报, 2017, 30(10): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201710003.htm

    YAN Chang-gen, GU Liang-jun, YANG Xiao-hua, et al. Triaxial shear property of geocell-reinforced loess[J]. China Journal of Highway and Transport, 2017, 30(10): 17-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201710003.htm
    [11]
    赵明华, 龙军, 张玲, 等. 不同型式复合地基试验对比分析[J]. 岩土工程学报, 2013, 35(4): 611-618. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201304004.htm

    ZHAO Ming-hua, LONG Jun, ZHANG Ling, et al. Comparative analysis of model tests on different types of composite foundations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 611-618. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201304004.htm
    [12]
    杨利. 用土工格室加固的粗粒土力学特性研究[D]. 大连: 大连理工大学, 2013.

    YANG Li. Study on Mechanical Properties of Coarse Grained Soil Reinforced with Geocell[D]. Dalian: Dalian University of Technology, 2013. (in Chinese)
    [13]
    李俊伟, 黄宏伟. 土工格室HDPE条带拉伸应变率相关特性[J]. 建筑材料学报, 2008, 11(1): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200801011.htm

    LI Jun-wei, HUANG Hong-wei. Strain rate dependent tensile behavior of hdpe geocell strip[J]. Journal of Building Materials, 2008, 11(1): 47-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200801011.htm
    [14]
    LIU Y, DENG A, JAKSA M. Failure mechanisms of geocell walls and junctions[J]. Geotextiles and Geomembranes, 2019, 47(2): 104-120.
    [15]
    张雯静, 王鸿博, 傅佳佳, 等. Ⅰ型-哑铃形试样在纳米纤维膜拉伸性能测试中的应用探讨[J]. 材料导报, 2013, 27(增刊2): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2013S2005.htm

    ZHANG Wen-jing, WANG Hong-bo, FU Jia-jia, et al. Investigation on application of dumbbell-shaped specimen in tensile property test of nanofiber membrane[J]. Materials Review, 2013, 27(S2): 16-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2013S2005.htm
    [16]
    刘杰. 塑料土工格栅拉伸性能及工艺研究[D]. 济南: 山东大学, 2015.

    LIU Jie. The Tensile Property and Technology Research of Plastic Geogrid[D]. Jinan: Shandong University, 2015. (in Chinese)
  • Related Articles

    [1]CHEN Rong, WU Zhiyong, HAO Dongxue, GAO Yucong. Evolution rules and effects of particle breakage for quartz sand in triaxial shear tests under high pressures[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1713-1722. DOI: 10.11779/CJGE20220647
    [2]LUO Ming-xing, ZHANG Ji-ru, LIU Xiao-xuan. Dilatancy behaviors and equation of calcareous sand considering stress path and particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1453-1462. DOI: 10.11779/CJGE202108010
    [3]WANG Zhao-nan, WANG Gang, YE Qin-guo, YIN Hao. Particle breakage model for coral sand under triaxial compression stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 540-546. DOI: 10.11779/CJGE202103017
    [4]ZHANG Ji-ru, HUA Chen, LUO Ming-xing, ZHANG Bi-wen. Behavior of particle breakage in calcareous sand during drained triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1593-1602. DOI: 10.11779/CJGE202009003
    [5]WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. DOI: 10.11779/CJGE201904020
    [6]WANG Yuan, ZHANG Sheng, AO Da-hua, YU Yu-zhen, SUN Xun. Particle breakage characteristics of rockfills under complex stress paths[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 698-706. DOI: 10.11779/CJGE201804014
    [7]CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei, HUANG Ying-hao. Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. DOI: 10.11779/CJGE201605019
    [8]JIA Yu-feng, WANG Bing-shen, CHI Shi-chun. Particle breakage of rockfill during triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1692-1697. DOI: 10.11779/CJGE201509018
    [9]LIU Meng-cheng, GAO Yu-feng, LIU Han-long. Effect of particle breakage on strength and deformation of modeled rockfills[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1691-1800.
    [10]WEI Song, ZHU Jungao, QIAN Qihu, LI Fan. Particle breakage of coarse-grained materials in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 533-538.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return