Citation: | SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, WU Lin-yu, WANG Heng-xing. Cementation effect evaluation of MICP sand solidification via electrical resistivity[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 579-585. DOI: 10.11779/CJGE202103022 |
[1] |
SUN X, MIAO L, WU L, et al. The improvement of bio-cementation at low temperature based on Bacillus megaterium[J]. Applied Microbiology and Biotechnology, 2019, 103(17): 7191-7202. doi: 10.1007/s00253-019-09986-7
|
[2] |
LIU L, LIU H, STUEDLEIN A, et al. Strength, stiffness, and microstructure characteristics of biocemented calcareous sand[J]. Can Geotech J, 2019, 56(10): 1502-1513. doi: 10.1139/cgj-2018-0007
|
[3] |
VAN PAASSEN L. Biogrout Ground Improvement by Microbially Induced Carbonate Precipitation[D]. Delft: Delft University of Technology, 2009.
|
[4] |
孙潇昊, 缪林昌, 童天志, 等. 砂土微生物矿化过程中尿素的影响研究[J]. 岩土工程学报, 2018, 40(5): 939-944. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805024.htm
SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, et al. Effect of methods of adding urea in culture media on sand solidification tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 939-944. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805024.htm
|
[5] |
程晓辉, 麻强, 杨钻. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm
CHENG Xiao-hui, MA Qiang, YANG Zuan. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm
|
[6] |
BRYSON L, BATHE A. Determination of selected geotechnical properties of soil using electrical conductivity testing[J]. Geotechnical Test Journal, 2009, 32(3): 1-10.
|
[7] |
MCCARTER W, DESMAZES P. Soil characterization using electrical measurements[J]. Géotechnique, 1997, 47(1): 179-183. doi: 10.1680/geot.1997.47.1.179
|
[8] |
RINALDI V, CUESTAS G. Ohmic conductivity of a compacted silty clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(10): 824-835. doi: 10.1061/(ASCE)1090-0241(2002)128:10(824)
|
[9] |
缪林昌, 严明良, 崔颖. 重塑膨胀土的电阻率特性测试研究[J]. 岩土工程学报, 2007, 29(9): 1413-1417. doi: 10.3321/j.issn:1000-4548.2007.09.022
MIAO Lin-chang, YAN Ming-liang, CUI Yin. Study of electrical resistivity feature of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1413-1417. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.09.022
|
[10] |
ARCHIE G. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Petroleum Transactions of AIME, 1942, 146(1): 54-62. doi: 10.2118/942054-G
|
[11] |
KELLER G, FRISCHKNECHT F. Electrical Methods in Geophysical Prospecting[M]. New York: Pergamon Press, 1966: 66-68.
|
[12] |
章定文, 曹智国, 刘松玉. 固化土电阻率变化规律与经验模型[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4139-4144. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2093.htm
ZHANG Ding-wen, CAO Zhi-guo, LIU Song-yu. Characteristics and an experiential model of electrical resistivity of stabilized soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4139-4144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2093.htm
|
[13] |
LI M, GUO H, CHENG X. Application of response surface methodology for carbonate precipitation production induced by a mutant strain of Sporosarcina pasteurii[C]//GeoFrontiers Advances in Geotechnical Engineering, 2011, Dallas: 4079-4088.
|
[14] |
SUN X, MIAO L, TONG T, et al. Study of the effect of temperature on microbially induced carbonate precipitation[J]. Acta Geotech, 2018, 14(3): 627-638.
|
1. |
史金权,王磊,张轩铭,赵航,吴秉阳,赵航行,刘汉龙,肖杨. 微生物加固钙质砂地基电阻率特性试验研究. 岩土工程学报. 2024(02): 244-253 .
![]() | |
2. |
马乾玮,张洁雅,曹家玮,董晓强. 基于电阻率表征的固化镉污染土的力学特性. 太原理工大学学报. 2024(05): 823-831 .
![]() | |
3. |
张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 .
![]() | |
4. |
崔雪,田斌,卢晓春,熊勃勃,冯程鑫. 基于电阻率的滑坡土体含水率贝叶斯LSTM网络模型预测研究. 水电能源科学. 2022(03): 182-185 .
![]() |