• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, WU Lin-yu, WANG Heng-xing. Cementation effect evaluation of MICP sand solidification via electrical resistivity[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 579-585. DOI: 10.11779/CJGE202103022
Citation: SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, WU Lin-yu, WANG Heng-xing. Cementation effect evaluation of MICP sand solidification via electrical resistivity[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 579-585. DOI: 10.11779/CJGE202103022

Cementation effect evaluation of MICP sand solidification via electrical resistivity

More Information
  • Received Date: May 24, 2020
  • Available Online: December 04, 2022
  • There is no simple and feasible method to evaluate the on-site cementation effect of microbially induced calcium carbonate precipitation (MICP). Therefore, this study uses a convenient and non-destructive electrical resistivity method to evaluate the cementation effect of MICP sand solidification. First, the relationships of resistivity of MICP-solidified sand columns and porosity, water content, and calcium carbonate (CaCO3) content are studied. The relationship between the resistivity and the unconfined compressive strength of the solidified sand column is then studied. The comprehensive parameter is proposed to represent the porosity, water content and CaCO3 content of the solidified sand column, and the relationship between the comprehensive parameter and the resistivity or strengths is studied. Finally, a resistivity model for sand column solidified by MICP is proposed. The results show that the electrical resistivity increases with the increasing porosity, and it decreases with the increasing water content and also decreases approximately linearly with the increasing CaCO3 content. The electrical resistivity also has a good correlation with its related properties. The results demonstrate that the electrical resistivity method is an effective method to evaluate the cementation effect of MICP sand solidification, which can be used in the field application.
  • [1]
    SUN X, MIAO L, WU L, et al. The improvement of bio-cementation at low temperature based on Bacillus megaterium[J]. Applied Microbiology and Biotechnology, 2019, 103(17): 7191-7202. doi: 10.1007/s00253-019-09986-7
    [2]
    LIU L, LIU H, STUEDLEIN A, et al. Strength, stiffness, and microstructure characteristics of biocemented calcareous sand[J]. Can Geotech J, 2019, 56(10): 1502-1513. doi: 10.1139/cgj-2018-0007
    [3]
    VAN PAASSEN L. Biogrout Ground Improvement by Microbially Induced Carbonate Precipitation[D]. Delft: Delft University of Technology, 2009.
    [4]
    孙潇昊, 缪林昌, 童天志, 等. 砂土微生物矿化过程中尿素的影响研究[J]. 岩土工程学报, 2018, 40(5): 939-944. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805024.htm

    SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, et al. Effect of methods of adding urea in culture media on sand solidification tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 939-944. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805024.htm
    [5]
    程晓辉, 麻强, 杨钻. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm

    CHENG Xiao-hui, MA Qiang, YANG Zuan. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm
    [6]
    BRYSON L, BATHE A. Determination of selected geotechnical properties of soil using electrical conductivity testing[J]. Geotechnical Test Journal, 2009, 32(3): 1-10.
    [7]
    MCCARTER W, DESMAZES P. Soil characterization using electrical measurements[J]. Géotechnique, 1997, 47(1): 179-183. doi: 10.1680/geot.1997.47.1.179
    [8]
    RINALDI V, CUESTAS G. Ohmic conductivity of a compacted silty clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(10): 824-835. doi: 10.1061/(ASCE)1090-0241(2002)128:10(824)
    [9]
    缪林昌, 严明良, 崔颖. 重塑膨胀土的电阻率特性测试研究[J]. 岩土工程学报, 2007, 29(9): 1413-1417. doi: 10.3321/j.issn:1000-4548.2007.09.022

    MIAO Lin-chang, YAN Ming-liang, CUI Yin. Study of electrical resistivity feature of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1413-1417. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.09.022
    [10]
    ARCHIE G. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Petroleum Transactions of AIME, 1942, 146(1): 54-62. doi: 10.2118/942054-G
    [11]
    KELLER G, FRISCHKNECHT F. Electrical Methods in Geophysical Prospecting[M]. New York: Pergamon Press, 1966: 66-68.
    [12]
    章定文, 曹智国, 刘松玉. 固化土电阻率变化规律与经验模型[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4139-4144. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2093.htm

    ZHANG Ding-wen, CAO Zhi-guo, LIU Song-yu. Characteristics and an experiential model of electrical resistivity of stabilized soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4139-4144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2093.htm
    [13]
    LI M, GUO H, CHENG X. Application of response surface methodology for carbonate precipitation production induced by a mutant strain of Sporosarcina pasteurii[C]//GeoFrontiers Advances in Geotechnical Engineering, 2011, Dallas: 4079-4088.
    [14]
    SUN X, MIAO L, TONG T, et al. Study of the effect of temperature on microbially induced carbonate precipitation[J]. Acta Geotech, 2018, 14(3): 627-638.
  • Cited by

    Periodical cited type(4)

    1. 史金权,王磊,张轩铭,赵航,吴秉阳,赵航行,刘汉龙,肖杨. 微生物加固钙质砂地基电阻率特性试验研究. 岩土工程学报. 2024(02): 244-253 . 本站查看
    2. 马乾玮,张洁雅,曹家玮,董晓强. 基于电阻率表征的固化镉污染土的力学特性. 太原理工大学学报. 2024(05): 823-831 .
    3. 张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 .
    4. 崔雪,田斌,卢晓春,熊勃勃,冯程鑫. 基于电阻率的滑坡土体含水率贝叶斯LSTM网络模型预测研究. 水电能源科学. 2022(03): 182-185 .

    Other cited types(14)

Catalog

    Article views (249) PDF downloads (188) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return