Citation: | WANG Yan-zhen, ZHAO Ding-feng, CHEN Guo-xing, LIANG Ke. A new nonlinear effective stress method for one-dimensional seismic site response analysis and its validation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 502-510. DOI: 10.11779/CJGE202103013 |
[1] |
LIYANATHIRANA D S, POULOS H G. Numerical simulation of soil liquefaction due to earthquake loading[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(7): 511-523. doi: 10.1016/S0267-7261(02)00037-4
|
[2] |
LIYANAPATHIRANA D S, POULOS H G. A numerical model for dynamic soil liquefaction analysis[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9/10/11/12): 1007-1015.
|
[3] |
HASHASH, Y M A, GROHOLSKI, D R, PHILIPS C A, et al. DEEPSOIL V6.0, User Manual and Tutorial[M]. Urbana: Board of Trustees of University of Illinois at Urbana-Champaign, 2014.
|
[4] |
OLSON S M, MEI X, HASHASH Y M A. Nonlinear site response analysis with pore-water pressure generation for liquefaction triggering evaluation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(2): 04019128. doi: 10.1061/(ASCE)GT.1943-5606.0002191
|
[5] |
朱彤, 王睿, 张建民. 盾构隧道在可液化场地中的地震响应分析[J]. 岩土工程学报, 2019, 41(增刊1): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1016.htm
ZHU Tong, WANG Rui, ZHANG Jian-min. Seismic response analysis of shield tunnels in liquefiable soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S0): 57-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1016.htm
|
[6] |
大崎順彦, 原昭夫, 清田芳治. 地盤震動解析のための土の 動力学的モデルの提案と解析例[C]//第5回日本地震工学シンポジウム, 1978, 东京: 697-704.
COHSAKI Y, HARA A, KIYOTA Y. Stress-strain model of soil for seimic analysis[C]//Proceedings of the Fifth Japan Earthquake Engineering Symposium, 1978, Tokyo: 697-704. (in Japanese)
|
[7] |
赵丁凤, 阮滨, 陈国兴, 等. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证[J]. 岩土工程学报, 2017, 39(5): 888-895. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705018.htm
ZHAO Ding-feng, RUAN Bin, CHEN G X, et al. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888-895. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705018.htm
|
[8] |
RUAN B, ZHAO K, WANG S Y, et al. Numerical modeling of seismic site effects in a shallow estuarine bay (Suai Bay, Shantou, China)[J]. Engineering Geology, 2019, 260: 105233. doi: 10.1016/j.enggeo.2019.105233
|
[9] |
MIAO Y, YAO E, RUAN B, et al. Improved hilbert spectral representation method and its application to seismic analysis of shield tunnel subjected to spatially correlated ground motions[J]. Soil Dynamics & Earthquake Engineering, 2018, 111: 119-130.
|
[10] |
陈国兴, 孙瑞瑞, 赵丁凤, 等. 海底盾构隧道纵向地震反应特征的子模型分析[J]. 岩土工程学报, 2019, 41(11): 1983-1991. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911003.htm
CHEN Guo-xing, SUN Rui-rui, ZHAO Ding-feng, et al. Longitudinal seismic response characteristics of seabed shield tunnels using submodeling analysis[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1983-1991. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911003.htm
|
[11] |
陈少林, 朱学江, 赵宇昕, 等. 考虑土骨架非线性的饱和土-结构相互作用分析[J]. 地震工程与工程振动, 2019, 39(1): 114-126. doi: 10.13197/j.eeev.2019.01.114.chensl.014
CHEN Shao-lin, ZHU Xue-jiang, ZHAO Yu-xin, et al. Analysis of saturated soil-structure interaction considering soil skeleton nonlinearity[J]. Earthquake Engineering and Engineering Dynamics, 2019, 39(1): 114-126. (in Chinese) doi: 10.13197/j.eeev.2019.01.114.chensl.014
|
[12] |
陈国兴, 朱翔, 赵丁凤, 等. 珊瑚岛礁场地非线性地震反应特征分析[J]. 岩土工程学报, 2019, 41(3): 405-413. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903002.htm
CHEN Guo-xing, ZHU Xiang, ZHAO Ding-feng, et al. Nonlinear seismic response characteristics of a coral island site[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 405-413. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903002.htm
|
[13] |
GREEN R A, MITCHELL J K, POLITO C P. An energy- based excess pore pressure generation model for cohesionless soils[C]//Proceedings of the John Booker Memorial Symposium. Rotterdam, 2000, Netherlands.
|
[14] |
CHEN G X, ZHAO D F, CHEN W Y, et al. Excess pore water pressure generation in cyclic undrained testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2019, 145(7): 04019022. doi: 10.1061/(ASCE)GT.1943-5606.0002057
|
[15] |
MATASOVIC N, VUCETIC M. Cyclic characterization of liquefiable sands[J]. Journal of Geotechnical Engineering, 1993, 119(11): 1085-1821.
|
[16] |
HASHASH Y M A, PHILLIPS C, GROHOLSKI D R. Recent advances in non-Linear site response analysis[C]//The Fifth International Conference in Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 2010, San Diego.
|
[17] |
CHEN G X, ZHOU Z L, PAN H, et al. The influence of undrained cyclic loading patterns and consolidation states on the deformation features of saturated fine sand over a wide strain range[J]. Engineering Geology, 2016, 204: 77-93. doi: 10.1016/j.enggeo.2016.02.008
|
[18] |
TAO Y, RATHJE E. Insights into modeling small-strain site response derived from downhole array data[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2019, 145(7): 04019023. doi: 10.1061/(ASCE)GT.1943-5606.0002048
|
[19] |
RÉGNIER J, BONILLA, L F, BARD P Y, et al. PRENOLIN: International benchmark on 1D nonlinear site-response analysis‒Validation phase exercise[J]. Bulletin of the Seismological Society of America, 2018, 108(2): 876-900.
|
[20] |
KOKUSHO T, SATOH K, MATSUMOTO M. Nonlinear dynamic response of soil ground during 1995 Hyogo-ken nanbu earthquake[J]. Tsuchi-tu-Kiso, 1995, 43(9): 39-43. (in Japanese)
|
[21] |
YANG J, SATO T, LI X S. Nonlinear site effects on strong ground motion at a reclaimed island[J]. Canadian Geotechnical Journal, 2000, 37(1): 26-39. doi: 10.1139/t99-092
|
[22] |
FOERSTER E, MODARESSI H. Nonlinear numerical method for earthquake site response analysis II—case studies[J]. Bulletin of Earthquake Engineering, 2007, 5(3): 325-345.
|
[23] |
CUBRINOVSKI M, ISHIHARA K. Assessment of the Kobe Port Island liquefaction through analytical simulation of the vertical array records[C]//Proceedings of the Special Conference on Great Hanshin-Awafi Earthquake Disasters, Japan Society of Civil Engineers, 1996, Tokyo: 157-164.
|
1. |
郭万里,蔡正银,朱俊高. 粗粒土三阶状态相关本构模型研究. 岩土工程学报. 2025(02): 234-242 .
![]() | |
2. |
黄超,唐明扬,张升,童晨曦,郭鹏,赵伟. 混合均匀度对粗粒土强度特性影响的试验研究. 中南大学学报(自然科学版). 2024(06): 2175-2186 .
![]() | |
3. |
赵勇博,张振东,卞士海,史文龙. 考虑应力路径效应的堆石料剪胀方程研究. 辽宁工程技术大学学报(自然科学版). 2024(04): 479-485 .
![]() | |
4. |
徐斌,王星亮,庞锐,陈柯好. 考虑组构演化的砂砾土弹塑性本构模型. 岩土力学. 2024(11): 3197-3211 .
![]() | |
5. |
何忠明,刘正夫,向达. 基于路堤粗粒土填料力学特性的改进邓肯-张模型. 中国公路学报. 2023(01): 37-46 .
![]() | |
6. |
蔡新,谢昕卓,杨杰. 胶凝砂砾石料剪胀特性试验. 河海大学学报(自然科学版). 2023(02): 122-129 .
![]() | |
7. |
吴二鲁,朱俊高,陆阳洋,钱彬. 基于颗粒破碎耗能的粗粒料剪胀方程研究. 岩土工程学报. 2022(05): 898-906 .
![]() | |
8. |
石北啸,刘赛朝,吴鑫磊,常伟坤. 考虑颗粒破碎的堆石料剪胀特性研究. 岩土工程学报. 2021(07): 1360-1366 .
![]() | |
9. |
何亮,李雄威. 基于广义塑性模型的加筋面板堆石坝数值模拟. 水利水电技术. 2020(01): 109-114 .
![]() | |
10. |
于玉贞,张向韬,王远,吕禾,孙逊. 堆石料真三轴条件下力学特性试验研究进展. 工程力学. 2020(04): 1-21+29 .
![]() | |
11. |
洪本根,胡世丽,罗嗣海,王钰霖,王观石. 离子型稀土矿体的剪胀特性及其弹塑性本构模型的构建. 中国有色金属学报. 2020(08): 1957-1966 .
![]() | |
12. |
王新民,钱亚俊,姚芳芳,武颖利,皇甫泽华. 颗粒破碎对砂砾石料强度与变形特性的影响. 人民黄河. 2020(10): 148-151+156 .
![]() | |
13. |
张兆省,武颖利,皇甫泽华,郭万里. 三种粗粒土强度非线性描述方法的对比研究. 水电能源科学. 2019(03): 118-120+12 .
![]() | |
14. |
张博,杨维好,王宝生. 考虑大变形特征的超深冻结壁弹塑性设计理论. 岩土工程学报. 2019(07): 1288-1295 .
![]() | |
15. |
郭万里,朱俊高,钱彬,张丹. 粗粒土的颗粒破碎演化模型及其试验验证. 岩土力学. 2019(03): 1023-1029 .
![]() | |
16. |
杨光华. 土的现代本构理论的发展回顾与展望. 岩土工程学报. 2018(08): 1363-1372 .
![]() | |
17. |
汪良峰,汪斌,陈生水,李跃. 尾矿库筑坝土石料大型三轴试验与力学模型研究. 岩土工程学报. 2018(S2): 157-161 .
![]() |