• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Yan-zhen, ZHAO Ding-feng, CHEN Guo-xing, LIANG Ke. A new nonlinear effective stress method for one-dimensional seismic site response analysis and its validation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 502-510. DOI: 10.11779/CJGE202103013
Citation: WANG Yan-zhen, ZHAO Ding-feng, CHEN Guo-xing, LIANG Ke. A new nonlinear effective stress method for one-dimensional seismic site response analysis and its validation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 502-510. DOI: 10.11779/CJGE202103013

A new nonlinear effective stress method for one-dimensional seismic site response analysis and its validation

More Information
  • Received Date: May 07, 2020
  • Available Online: December 04, 2022
  • Given modification of earthquake motions due to liquefaction-induced soil softening, the effective stress analysis should be conducted to develop the site-specific design ground motion parameters at liquefiable sites. A loosely coupled nonlinear effective stress method for the site response analysis is proposed. In this method, the nonlinear hysteresis model for soils is incorporated with an excess pore water pressure generation model characterized by cyclic shear-volume strain coupling, which establishes the coupling relationship between the degradation of cyclic stiffness and the generation of excess pore water pressure associated with earthquake events. The material subroutine in ABAQUS/Explicit platform is developed. The method is then used to simulate the seismic response of the downhole array non-liquefied and liquefied sites in Japan. The results show a good consistency between the simulations and the recordings at different depths: (1) The difference between the simulated and the recorded peak ground accelerations for the non-liquefied site is only 2.6% (weak motion) and 11.8% (moderate motion). (2) The difference between the simulated and recorded peak accelerations at different depths for the liquefied site is less than 5%. (3) The simulated and recorded spectral acceleration curves of the non-liquefied and liquefied sites are in good agreement. Compared with the responses of a downhole array multilayer liquefied site calculated by DEEPSOIL V6.0, those of the proposed method show a better agreement with the seismic recordings at different depths.
  • [1]
    LIYANATHIRANA D S, POULOS H G. Numerical simulation of soil liquefaction due to earthquake loading[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(7): 511-523. doi: 10.1016/S0267-7261(02)00037-4
    [2]
    LIYANAPATHIRANA D S, POULOS H G. A numerical model for dynamic soil liquefaction analysis[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9/10/11/12): 1007-1015.
    [3]
    HASHASH, Y M A, GROHOLSKI, D R, PHILIPS C A, et al. DEEPSOIL V6.0, User Manual and Tutorial[M]. Urbana: Board of Trustees of University of Illinois at Urbana-Champaign, 2014.
    [4]
    OLSON S M, MEI X, HASHASH Y M A. Nonlinear site response analysis with pore-water pressure generation for liquefaction triggering evaluation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(2): 04019128. doi: 10.1061/(ASCE)GT.1943-5606.0002191
    [5]
    朱彤, 王睿, 张建民. 盾构隧道在可液化场地中的地震响应分析[J]. 岩土工程学报, 2019, 41(增刊1): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1016.htm

    ZHU Tong, WANG Rui, ZHANG Jian-min. Seismic response analysis of shield tunnels in liquefiable soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S0): 57-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1016.htm
    [6]
    大崎順彦, 原昭夫, 清田芳治. 地盤震動解析のための土の 動力学的モデルの提案と解析例[C]//第5回日本地震工学シンポジウム, 1978, 东京: 697-704.

    COHSAKI Y, HARA A, KIYOTA Y. Stress-strain model of soil for seimic analysis[C]//Proceedings of the Fifth Japan Earthquake Engineering Symposium, 1978, Tokyo: 697-704. (in Japanese)
    [7]
    赵丁凤, 阮滨, 陈国兴, 等. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证[J]. 岩土工程学报, 2017, 39(5): 888-895. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705018.htm

    ZHAO Ding-feng, RUAN Bin, CHEN G X, et al. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888-895. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705018.htm
    [8]
    RUAN B, ZHAO K, WANG S Y, et al. Numerical modeling of seismic site effects in a shallow estuarine bay (Suai Bay, Shantou, China)[J]. Engineering Geology, 2019, 260: 105233. doi: 10.1016/j.enggeo.2019.105233
    [9]
    MIAO Y, YAO E, RUAN B, et al. Improved hilbert spectral representation method and its application to seismic analysis of shield tunnel subjected to spatially correlated ground motions[J]. Soil Dynamics & Earthquake Engineering, 2018, 111: 119-130.
    [10]
    陈国兴, 孙瑞瑞, 赵丁凤, 等. 海底盾构隧道纵向地震反应特征的子模型分析[J]. 岩土工程学报, 2019, 41(11): 1983-1991. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911003.htm

    CHEN Guo-xing, SUN Rui-rui, ZHAO Ding-feng, et al. Longitudinal seismic response characteristics of seabed shield tunnels using submodeling analysis[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1983-1991. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911003.htm
    [11]
    陈少林, 朱学江, 赵宇昕, 等. 考虑土骨架非线性的饱和土-结构相互作用分析[J]. 地震工程与工程振动, 2019, 39(1): 114-126. doi: 10.13197/j.eeev.2019.01.114.chensl.014

    CHEN Shao-lin, ZHU Xue-jiang, ZHAO Yu-xin, et al. Analysis of saturated soil-structure interaction considering soil skeleton nonlinearity[J]. Earthquake Engineering and Engineering Dynamics, 2019, 39(1): 114-126. (in Chinese) doi: 10.13197/j.eeev.2019.01.114.chensl.014
    [12]
    陈国兴, 朱翔, 赵丁凤, 等. 珊瑚岛礁场地非线性地震反应特征分析[J]. 岩土工程学报, 2019, 41(3): 405-413. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903002.htm

    CHEN Guo-xing, ZHU Xiang, ZHAO Ding-feng, et al. Nonlinear seismic response characteristics of a coral island site[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 405-413. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903002.htm
    [13]
    GREEN R A, MITCHELL J K, POLITO C P. An energy- based excess pore pressure generation model for cohesionless soils[C]//Proceedings of the John Booker Memorial Symposium. Rotterdam, 2000, Netherlands.
    [14]
    CHEN G X, ZHAO D F, CHEN W Y, et al. Excess pore water pressure generation in cyclic undrained testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2019, 145(7): 04019022. doi: 10.1061/(ASCE)GT.1943-5606.0002057
    [15]
    MATASOVIC N, VUCETIC M. Cyclic characterization of liquefiable sands[J]. Journal of Geotechnical Engineering, 1993, 119(11): 1085-1821.
    [16]
    HASHASH Y M A, PHILLIPS C, GROHOLSKI D R. Recent advances in non-Linear site response analysis[C]//The Fifth International Conference in Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 2010, San Diego.
    [17]
    CHEN G X, ZHOU Z L, PAN H, et al. The influence of undrained cyclic loading patterns and consolidation states on the deformation features of saturated fine sand over a wide strain range[J]. Engineering Geology, 2016, 204: 77-93. doi: 10.1016/j.enggeo.2016.02.008
    [18]
    TAO Y, RATHJE E. Insights into modeling small-strain site response derived from downhole array data[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2019, 145(7): 04019023. doi: 10.1061/(ASCE)GT.1943-5606.0002048
    [19]
    RÉGNIER J, BONILLA, L F, BARD P Y, et al. PRENOLIN: International benchmark on 1D nonlinear site-response analysis‒Validation phase exercise[J]. Bulletin of the Seismological Society of America, 2018, 108(2): 876-900.
    [20]
    KOKUSHO T, SATOH K, MATSUMOTO M. Nonlinear dynamic response of soil ground during 1995 Hyogo-ken nanbu earthquake[J]. Tsuchi-tu-Kiso, 1995, 43(9): 39-43. (in Japanese)
    [21]
    YANG J, SATO T, LI X S. Nonlinear site effects on strong ground motion at a reclaimed island[J]. Canadian Geotechnical Journal, 2000, 37(1): 26-39. doi: 10.1139/t99-092
    [22]
    FOERSTER E, MODARESSI H. Nonlinear numerical method for earthquake site response analysis II—case studies[J]. Bulletin of Earthquake Engineering, 2007, 5(3): 325-345.
    [23]
    CUBRINOVSKI M, ISHIHARA K. Assessment of the Kobe Port Island liquefaction through analytical simulation of the vertical array records[C]//Proceedings of the Special Conference on Great Hanshin-Awafi Earthquake Disasters, Japan Society of Civil Engineers, 1996, Tokyo: 157-164.
  • Cited by

    Periodical cited type(17)

    1. 郭万里,蔡正银,朱俊高. 粗粒土三阶状态相关本构模型研究. 岩土工程学报. 2025(02): 234-242 . 本站查看
    2. 黄超,唐明扬,张升,童晨曦,郭鹏,赵伟. 混合均匀度对粗粒土强度特性影响的试验研究. 中南大学学报(自然科学版). 2024(06): 2175-2186 .
    3. 赵勇博,张振东,卞士海,史文龙. 考虑应力路径效应的堆石料剪胀方程研究. 辽宁工程技术大学学报(自然科学版). 2024(04): 479-485 .
    4. 徐斌,王星亮,庞锐,陈柯好. 考虑组构演化的砂砾土弹塑性本构模型. 岩土力学. 2024(11): 3197-3211 .
    5. 何忠明,刘正夫,向达. 基于路堤粗粒土填料力学特性的改进邓肯-张模型. 中国公路学报. 2023(01): 37-46 .
    6. 蔡新,谢昕卓,杨杰. 胶凝砂砾石料剪胀特性试验. 河海大学学报(自然科学版). 2023(02): 122-129 .
    7. 吴二鲁,朱俊高,陆阳洋,钱彬. 基于颗粒破碎耗能的粗粒料剪胀方程研究. 岩土工程学报. 2022(05): 898-906 . 本站查看
    8. 石北啸,刘赛朝,吴鑫磊,常伟坤. 考虑颗粒破碎的堆石料剪胀特性研究. 岩土工程学报. 2021(07): 1360-1366 . 本站查看
    9. 何亮,李雄威. 基于广义塑性模型的加筋面板堆石坝数值模拟. 水利水电技术. 2020(01): 109-114 .
    10. 于玉贞,张向韬,王远,吕禾,孙逊. 堆石料真三轴条件下力学特性试验研究进展. 工程力学. 2020(04): 1-21+29 .
    11. 洪本根,胡世丽,罗嗣海,王钰霖,王观石. 离子型稀土矿体的剪胀特性及其弹塑性本构模型的构建. 中国有色金属学报. 2020(08): 1957-1966 .
    12. 王新民,钱亚俊,姚芳芳,武颖利,皇甫泽华. 颗粒破碎对砂砾石料强度与变形特性的影响. 人民黄河. 2020(10): 148-151+156 .
    13. 张兆省,武颖利,皇甫泽华,郭万里. 三种粗粒土强度非线性描述方法的对比研究. 水电能源科学. 2019(03): 118-120+12 .
    14. 张博,杨维好,王宝生. 考虑大变形特征的超深冻结壁弹塑性设计理论. 岩土工程学报. 2019(07): 1288-1295 . 本站查看
    15. 郭万里,朱俊高,钱彬,张丹. 粗粒土的颗粒破碎演化模型及其试验验证. 岩土力学. 2019(03): 1023-1029 .
    16. 杨光华. 土的现代本构理论的发展回顾与展望. 岩土工程学报. 2018(08): 1363-1372 . 本站查看
    17. 汪良峰,汪斌,陈生水,李跃. 尾矿库筑坝土石料大型三轴试验与力学模型研究. 岩土工程学报. 2018(S2): 157-161 . 本站查看

    Other cited types(19)

Catalog

    Article views (361) PDF downloads (299) Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return