Citation: | WU Er-lu, ZHU Jun-gao, LU Yang-yang, QIAN Bin. Dilatancy equation for coarse-grained soils incorporating particle breakage energy[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 898-906. DOI: 10.11779/CJGE202205013 |
[1] |
郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 1998.
GUO Qing-guo. Engineering characteristic and pplication of coarse-grained soil[M]. Zhengzhou: Yellow River Conservancy Press, 1998. (in Chinese)
|
[2] |
姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147–2153. doi: 10.11779/CJGE201612002
YAO Yang-ping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147–2153. (in Chinese) doi: 10.11779/CJGE201612002
|
[3] |
YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326–343. doi: 10.1016/j.compgeo.2019.02.024
|
[4] |
YAO Y P, YAMAMOTO H, WANG N D. Constitutive model considering sand crushing[J]. Soils and Foundations, 2008, 48(4): 603–608. doi: 10.3208/sandf.48.603
|
[5] |
郭万里, 蔡正银, 武颖利, 等. 粗粒土的颗粒破碎耗能及剪胀方程研究[J]. 岩土力学, 2019, 40(12): 4703–4710. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912018.htm
GUO Wan-li, CAI Zheng-yin, WU Ying-li, et al. Study on the particle breakage energy and dilatancy of coarse-grained soils[J]. Rock and Soil Mechanics, 2019, 40(12): 4703–4710. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912018.htm
|
[6] |
UENG T S, CHEN T J. Energy aspects of particle breakage in drained shear of sands[J]. Géotechnique, 2000, 50(1): 65–72. doi: 10.1680/geot.2000.50.1.65
|
[7] |
GUO W L, ZHU J G. Particle breakage energy and stress dilatancy in drained shear of rockfills[J]. Géotechnique Letters, 2017, 7(4): 304–308. doi: 10.1680/jgele.17.00099
|
[8] |
米占宽, 李国英, 陈生水. 基于破碎能耗的粗颗粒料本构模型[J]. 岩土工程学报, 2012, 34(10): 1801–1811. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14871.shtml
MI Zhan-kuan, LI Guo-ying, CHEN Sheng-shui. Constitutive model for coarse granular materials based on breakage energy[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1801–1811. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14871.shtml
|
[9] |
王占军, 陈生水, 傅中志. 堆石料的剪胀特性与广义塑性本构模型[J]. 岩土力学, 2015, 36(7): 1931–1938. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507019.htm
WANG Zhan-jun, CHEN Sheng-shui, FU Zhong-zhi. Dilatancy behaviors and generalized plasticity constitutive model of rockfill materials[J]. Rock and Soil Mechanics, 2015, 36(7): 1931–1938. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507019.htm
|
[10] |
姚仰平, 黄冠, 王乃东, 等. 堆石料的应力–应变特性及其三维破碎本构模型[J]. 工业建筑, 2011, 41(9): 12–17, 104. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201109004.htm
YAO Yang-ping, HUANG Guan, WANG Nai-dong, et al. Stress-strain characteristic and three-dimensional constitutive model of rockfill considering crushing[J]. Industrial Construction, 2011, 41(9): 12–17, 104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201109004.htm
|
[11] |
贾宇峰, 迟世春, 林皋. 考虑颗粒破碎影响的粗粒土本构模型[J]. 岩土力学, 2009, 30(11): 3261–3266, 3272. doi: 10.3969/j.issn.1000-7598.2009.11.007
JIA Yu-feng, CHI Shi-chun, LIN Gao. Constitutive model for coarse granular aggregates incorporating particle breakage[J]. Rock and Soil Mechanics, 2009, 30(11): 3261–3266, 3272. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.11.007
|
[12] |
陈生水, 傅中志, 韩华强, 等. 一个考虑颗粒破碎的堆石料弹塑性本构模型[J]. 岩土工程学报, 2011, 33(10): 1489–1495. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14194.shtml
CHEN Sheng-shui, FU Zhong-zhi, HAN Hua-qiang, et al. An elastoplastic model for rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1489–1495. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14194.shtml
|
[13] |
张丙印, 贾延安, 张宗亮. 堆石体修正Rowe剪胀方程与南水模型[J]. 岩土工程学报, 2007, 29(10): 1443–1448. doi: 10.3321/j.issn:1000-4548.2007.10.002
ZHANG Bing-yin, JIA Ya-nan, ZHANG Zong-liang. Modified Rowe's dilatancy law of rockfill and Shen Zhujiang's double yield surfaces elastoplastic model[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1443–1448. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.10.002
|
[14] |
郭万里, 朱俊高, 彭文明. 粗粒土的剪胀方程及广义塑性本构模型研究[J]. 岩土工程学报, 2018, 40(6): 1103–1110. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17386.shtml
GUO Wan-li, ZHU Jun-gao, PENG Wen-ming. Dilatancy equation and generalized plastic constitutive model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1103–1110. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17386.shtml
|
[15] |
孙逸飞, 高玉峰, 鞠雯. 分数阶塑性力学及其砂土本构模型[J]. 岩土工程学报, 2018, 40(8): 1535–1541. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17490.shtml
SUN Yi-fei, GAO Yu-feng, JU Wen. Fractional plasticity and its application in constitutive model for sands[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1535–1541. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17490.shtml
|
[16] |
ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1962, 269(1339): 500–527.
|
[17] |
郭万里. 粗粒土颗粒破碎演化规律及本构模型研究[D]. 南京: 河海大学, 2018.
GUO Wan-li. Particle Breakage Evolution Model of Coarse-Grained Soil and Constitutive Model[D]. Nanjing: Hohai Universiyt, 2018. (in Chinese)
|
[18] |
王峰, 张建清. 考虑颗粒强度尺寸效应的原型堆石料破碎特性研究[J]. 岩土力学, 2020, 41(1): 87–94. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001011.htm
WANG Feng, ZHANG Jian-qing. Study of breakage behaviour of original rockfill materials considering size effect on particle strength[J]. Rock and Soil Mechanics, 2020, 41(1): 87–94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001011.htm
|
[19] |
吴二鲁, 朱俊高, 黄维, 等. 三轴剪切过程中粗粒料颗粒破碎变化规律研究[J]. 岩土工程学报, 2020, 42(12): 2330–2335. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18383.shtml
WU Er-lu, ZHU Jun-gao, HUANG Wei, et al. Evolution law of particle breakage of coarse-grained soil during triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2330–2335. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18383.shtml
|
[20] |
PRÉVOST J, HØEG K. Soil mechanics and plasticity analysis of strain softening[J]. Géotechnique, 1975, 25: 279–297. doi: 10.1680/geot.1975.25.2.279
|
[21] |
秦红玉, 刘汉龙, 高玉峰, 等. 粗粒料强度和变形的大型三轴试验研究[J]. 岩土力学, 2004, 25(10): 1575–1580. doi: 10.3969/j.issn.1000-7598.2004.10.013
QIN Hong-yu, LIU Han-long, GAO Yu-feng, et al. Research on strength and deformation behavior of coarse aggregates based on large-scale triaxial tests[J]. Rock and Soil Mechanics, 2004, 25(10): 1575–1580. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.10.013
|
[22] |
贾宇峰, 迟世春, 杨峻, 等. 粗粒土的破碎耗能计算及影响因素[J]. 岩土力学, 2009, 30(7): 1960–1966. doi: 10.3969/j.issn.1000-7598.2009.07.015
JIA Yu-feng, CHI Shi-chun, YANG Jun, et al. Measurement of breakage energy of coarse granular aggregates[J]. Rock and Soil Mechanics, 2009, 30(7): 1960–1966. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.07.015
|
[23] |
WANG L, ZHU J G, ZHANG Z L, et al. Effects of dry density on shear behavior and particle breakage for slate rockfill material[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1181–1192. doi: 10.1007/s10064-020-01971-z
|