• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Er-lu, ZHU Jun-gao, LU Yang-yang, QIAN Bin. Dilatancy equation for coarse-grained soils incorporating particle breakage energy[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 898-906. DOI: 10.11779/CJGE202205013
Citation: WU Er-lu, ZHU Jun-gao, LU Yang-yang, QIAN Bin. Dilatancy equation for coarse-grained soils incorporating particle breakage energy[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 898-906. DOI: 10.11779/CJGE202205013

Dilatancy equation for coarse-grained soils incorporating particle breakage energy

More Information
  • Received Date: July 05, 2021
  • Available Online: September 22, 2022
  • The internal relationship between particle breakage and stress deformation of coarse-grained soils can be reflected by the particle breakage energy. The change law of particle breakage of coarse-grained soils during triaxial tests is studied. According to this law, the fraction coefficient M in the energy balance equation proposed by Ueng and Chen is modified to solve the problem that the particle breakage energy calculated by the energy balance equation violates the thermodynamic law. On this basis, a simple dilatancy equation for coarse-grained soils is developed. The main conclusions are as follows: (1) The proposed mathematical relationship among particle breakage index, confining pressure and axial strain can describe the change law of particle breakage well. (2) The reasonable calculation of particle breakage energy is realized by modifying the fraction coefficient in the energy balance equation, which satisfies the thermodynamic law. (3) The test results show that the ratio of the dilatancy energy to the total input work is very small, so it can be ignored in the energy balance equation. (4) There is an obvious linear relationship between dEb/dεs and M, and a dilatancy equation can be developed by substituting this linear relationship into the energy balance equation, and this dilatancy equation can well simulate the dilatancy behaviors of coarse-grained soils, and its mathematical form is simple enough, so that its plastic potential function can be derived, which provides conditions for the subsequent studies on the fraction-order constitutive model considering particle breakage.
  • [1]
    郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 1998.

    GUO Qing-guo. Engineering characteristic and pplication of coarse-grained soil[M]. Zhengzhou: Yellow River Conservancy Press, 1998. (in Chinese)
    [2]
    姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147–2153. doi: 10.11779/CJGE201612002

    YAO Yang-ping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147–2153. (in Chinese) doi: 10.11779/CJGE201612002
    [3]
    YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326–343. doi: 10.1016/j.compgeo.2019.02.024
    [4]
    YAO Y P, YAMAMOTO H, WANG N D. Constitutive model considering sand crushing[J]. Soils and Foundations, 2008, 48(4): 603–608. doi: 10.3208/sandf.48.603
    [5]
    郭万里, 蔡正银, 武颖利, 等. 粗粒土的颗粒破碎耗能及剪胀方程研究[J]. 岩土力学, 2019, 40(12): 4703–4710. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912018.htm

    GUO Wan-li, CAI Zheng-yin, WU Ying-li, et al. Study on the particle breakage energy and dilatancy of coarse-grained soils[J]. Rock and Soil Mechanics, 2019, 40(12): 4703–4710. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912018.htm
    [6]
    UENG T S, CHEN T J. Energy aspects of particle breakage in drained shear of sands[J]. Géotechnique, 2000, 50(1): 65–72. doi: 10.1680/geot.2000.50.1.65
    [7]
    GUO W L, ZHU J G. Particle breakage energy and stress dilatancy in drained shear of rockfills[J]. Géotechnique Letters, 2017, 7(4): 304–308. doi: 10.1680/jgele.17.00099
    [8]
    米占宽, 李国英, 陈生水. 基于破碎能耗的粗颗粒料本构模型[J]. 岩土工程学报, 2012, 34(10): 1801–1811. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14871.shtml

    MI Zhan-kuan, LI Guo-ying, CHEN Sheng-shui. Constitutive model for coarse granular materials based on breakage energy[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1801–1811. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14871.shtml
    [9]
    王占军, 陈生水, 傅中志. 堆石料的剪胀特性与广义塑性本构模型[J]. 岩土力学, 2015, 36(7): 1931–1938. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507019.htm

    WANG Zhan-jun, CHEN Sheng-shui, FU Zhong-zhi. Dilatancy behaviors and generalized plasticity constitutive model of rockfill materials[J]. Rock and Soil Mechanics, 2015, 36(7): 1931–1938. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507019.htm
    [10]
    姚仰平, 黄冠, 王乃东, 等. 堆石料的应力–应变特性及其三维破碎本构模型[J]. 工业建筑, 2011, 41(9): 12–17, 104. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201109004.htm

    YAO Yang-ping, HUANG Guan, WANG Nai-dong, et al. Stress-strain characteristic and three-dimensional constitutive model of rockfill considering crushing[J]. Industrial Construction, 2011, 41(9): 12–17, 104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201109004.htm
    [11]
    贾宇峰, 迟世春, 林皋. 考虑颗粒破碎影响的粗粒土本构模型[J]. 岩土力学, 2009, 30(11): 3261–3266, 3272. doi: 10.3969/j.issn.1000-7598.2009.11.007

    JIA Yu-feng, CHI Shi-chun, LIN Gao. Constitutive model for coarse granular aggregates incorporating particle breakage[J]. Rock and Soil Mechanics, 2009, 30(11): 3261–3266, 3272. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.11.007
    [12]
    陈生水, 傅中志, 韩华强, 等. 一个考虑颗粒破碎的堆石料弹塑性本构模型[J]. 岩土工程学报, 2011, 33(10): 1489–1495. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14194.shtml

    CHEN Sheng-shui, FU Zhong-zhi, HAN Hua-qiang, et al. An elastoplastic model for rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1489–1495. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14194.shtml
    [13]
    张丙印, 贾延安, 张宗亮. 堆石体修正Rowe剪胀方程与南水模型[J]. 岩土工程学报, 2007, 29(10): 1443–1448. doi: 10.3321/j.issn:1000-4548.2007.10.002

    ZHANG Bing-yin, JIA Ya-nan, ZHANG Zong-liang. Modified Rowe's dilatancy law of rockfill and Shen Zhujiang's double yield surfaces elastoplastic model[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1443–1448. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.10.002
    [14]
    郭万里, 朱俊高, 彭文明. 粗粒土的剪胀方程及广义塑性本构模型研究[J]. 岩土工程学报, 2018, 40(6): 1103–1110. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17386.shtml

    GUO Wan-li, ZHU Jun-gao, PENG Wen-ming. Dilatancy equation and generalized plastic constitutive model for coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1103–1110. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17386.shtml
    [15]
    孙逸飞, 高玉峰, 鞠雯. 分数阶塑性力学及其砂土本构模型[J]. 岩土工程学报, 2018, 40(8): 1535–1541. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17490.shtml

    SUN Yi-fei, GAO Yu-feng, JU Wen. Fractional plasticity and its application in constitutive model for sands[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1535–1541. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17490.shtml
    [16]
    ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1962, 269(1339): 500–527.
    [17]
    郭万里. 粗粒土颗粒破碎演化规律及本构模型研究[D]. 南京: 河海大学, 2018.

    GUO Wan-li. Particle Breakage Evolution Model of Coarse-Grained Soil and Constitutive Model[D]. Nanjing: Hohai Universiyt, 2018. (in Chinese)
    [18]
    王峰, 张建清. 考虑颗粒强度尺寸效应的原型堆石料破碎特性研究[J]. 岩土力学, 2020, 41(1): 87–94. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001011.htm

    WANG Feng, ZHANG Jian-qing. Study of breakage behaviour of original rockfill materials considering size effect on particle strength[J]. Rock and Soil Mechanics, 2020, 41(1): 87–94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001011.htm
    [19]
    吴二鲁, 朱俊高, 黄维, 等. 三轴剪切过程中粗粒料颗粒破碎变化规律研究[J]. 岩土工程学报, 2020, 42(12): 2330–2335. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18383.shtml

    WU Er-lu, ZHU Jun-gao, HUANG Wei, et al. Evolution law of particle breakage of coarse-grained soil during triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2330–2335. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18383.shtml
    [20]
    PRÉVOST J, HØEG K. Soil mechanics and plasticity analysis of strain softening[J]. Géotechnique, 1975, 25: 279–297. doi: 10.1680/geot.1975.25.2.279
    [21]
    秦红玉, 刘汉龙, 高玉峰, 等. 粗粒料强度和变形的大型三轴试验研究[J]. 岩土力学, 2004, 25(10): 1575–1580. doi: 10.3969/j.issn.1000-7598.2004.10.013

    QIN Hong-yu, LIU Han-long, GAO Yu-feng, et al. Research on strength and deformation behavior of coarse aggregates based on large-scale triaxial tests[J]. Rock and Soil Mechanics, 2004, 25(10): 1575–1580. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.10.013
    [22]
    贾宇峰, 迟世春, 杨峻, 等. 粗粒土的破碎耗能计算及影响因素[J]. 岩土力学, 2009, 30(7): 1960–1966. doi: 10.3969/j.issn.1000-7598.2009.07.015

    JIA Yu-feng, CHI Shi-chun, YANG Jun, et al. Measurement of breakage energy of coarse granular aggregates[J]. Rock and Soil Mechanics, 2009, 30(7): 1960–1966. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.07.015
    [23]
    WANG L, ZHU J G, ZHANG Z L, et al. Effects of dry density on shear behavior and particle breakage for slate rockfill material[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1181–1192. doi: 10.1007/s10064-020-01971-z
  • Cited by

    Periodical cited type(4)

    1. 罗亚琼,张超,李洁,卢霖,任中俊. 土石混合体大型三轴剪切变形特性及模拟方法. 水利水电技术(中英文). 2023(05): 168-176 .
    2. 杨光伟,赵军霖,黄建,齐吉琳. 含石量对砂卵石土的颗粒破碎及强度与变形的影响研究. 中国水利水电科学研究院学报(中英文). 2022(03): 277-286 .
    3. 沈霞,冯杰. 藏东南地区砂卵石土三轴试验浅析. 科技与创新. 2019(13): 53-54+58 .
    4. 陈鸽,朱俊高,袁荣宏,王龙. 风干与饱和堆石料强度与变形特性试验研究. 西安建筑科技大学学报(自然科学版). 2019(06): 853-858+872 .

    Other cited types(1)

Catalog

    Article views (224) PDF downloads (106) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return