• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MU Lin-long, ZHU Meng-xi, HUANG Mao-song, KANG Jing-wen, JI Zhi-chao, YU Xing. Control criteria for deformation of foundation pits based on protection requirements of adjacent pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 465-470. DOI: 10.11779/CJGE202103009
Citation: MU Lin-long, ZHU Meng-xi, HUANG Mao-song, KANG Jing-wen, JI Zhi-chao, YU Xing. Control criteria for deformation of foundation pits based on protection requirements of adjacent pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 465-470. DOI: 10.11779/CJGE202103009

Control criteria for deformation of foundation pits based on protection requirements of adjacent pile foundations

More Information
  • Received Date: June 30, 2020
  • Available Online: December 04, 2022
  • The protection of adjacent pile foundations is always a key concern of the foundation pit engineering in urban areas. Controlling the deformation of the retaining wall is the most effective way to prevent the damage of the adjacent pile foundations induced by the excavation. Lack of control criteria for deformation of retaining wall of an excavation usually leads to difficulties for engineers to design the support system for the excavation near the existing pile foundations. The current deformation control criteria for the retaining wall come from the statistics derived from the measured results, which cannot reflect the real deformation bearing capacity of the existing pile foundations. In this study, a two-stage analysis method is proposed to calculate the impact of an excavation on the adjacent piled raft foundation. The relationship between the deformation of the retaining wall and the deformation of the pile foundations is investigated. A deformation impact factor is proposed through a series of parametric study taking account of the dimensions of the foundation pit and pile foundations. Based on the deformation control requirements of the adjacent pile foundations, the control and economic criteria of the deformation of the retaining wall are proposed.
  • [1]
    OU C Y, LIAO J T, CHENG W L. Building response and ground movements induced by a deep excavation[J]. Géotechnique, 2000, 50(3): 209-220. doi: 10.1680/geot.2000.50.3.209
    [2]
    TAN Y, HUANG R, KANG Z, et al. Covered semi-top-down excavation of subway station surrounded by closely spaced buildings in downtown shanghai: building response[J]. Journal of Performance of Constructed Facilities, 2016, 30(6): 04016040. doi: 10.1061/(ASCE)CF.1943-5509.0000892
    [3]
    FINNO R J, VOSS F T, ROSSOW E, BLACKBURN J T. Evaluating damage potential in buildings affected by excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10): 1199-1210. doi: 10.1061/(ASCE)1090-0241(2005)131:10(1199)
    [4]
    徐中华, 王卫东. 深基坑变形控制指标研究[J]. 地下空间与工程学报, 2010, 6(3): 619-626. doi: 10.3969/j.issn.1673-0836.2010.03.033

    XU Zhong-hua, WANG Wei-dong. Deformation control criteria of deep excavations[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(3): 619-626. (in Chinese) doi: 10.3969/j.issn.1673-0836.2010.03.033
    [5]
    基坑工程技术规范:DG/TJ08—61—2018[S]. 2018.

    Technical Code for Excavation Engineering: DG/TJ08— 61—2018[S]. 2018. (in Chinese)
    [6]
    FINNO R J, LAWRENCE S A, ALLAWH N F, et al. Analysis of performance of pile groups adjacent to deep excavation[J]. Journal of Geotechnical Engineering, ASCE, 1991, 117(6): 934-955. doi: 10.1061/(ASCE)0733-9410(1991)117:6(934)
    [7]
    杨敏, 周洪波, 杨烨. 基坑开挖与临近桩基相互作用分析[J]. 土木工程学报, 2005, 38(4): 93-96. doi: 10.15951/j.tmgcxb.2005.04.016

    YANG Min, ZHOU Hong-bo, YANG Ye. Numerical analysis of pile response due to unsupported excavation-induced lateral soil movement[J]. China Civil Engineering Journal, 2005, 38(4): 93-96. (in Chinese) doi: 10.15951/j.tmgcxb.2005.04.016
    [8]
    ILIADELIS D. Effect of Deep Excavation on An Adjacent Pile Foundation[D]. Cambridge: Massachusetts Institute of Technology, 2006.
    [9]
    陈福全, 汪金卫, 刘毓氚. 基坑开挖时临近桩基形状的数值分析[J]. 岩土力学, 2008, 29(7): 1971-1976. doi: 10.3969/j.issn.1000-7598.2008.07.044

    CHEN Fu-quan, WANG Jin-wei, LIU Yu-chuan. Numerical analysis of pile response due to braced excavation-induced soil lateral movement[J]. Rock and Soil Mechanics, 2008, 29(7): 1971-1976. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.07.044
    [10]
    NG C W, LINGS M L. Effects of modeling soil nonlinearity and wall installation on back-analysis of deep excavation in stiff clay[J]. Journal of Geotechnical Engineering, 1995, 121(10): 687-695. doi: 10.1061/(ASCE)0733-9410(1995)121:10(687)
    [11]
    FINNO R J, CALVELLO M. Supported excavations: observational method and inverse modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(7): 826-836. doi: 10.1061/(ASCE)1090-0241(2005)131:7(826)
    [12]
    CALVELLO M. Inverse Analysis of Supported Excavations Through Chicago Glacial Clays[D]. Evanston: Northwestern University, 2002.
    [13]
    HASHASH Y M A, SONG H, OSOULI A. Three- dimensional inverse analyses of a deep excavation in Chicago clays[J]. International Journal for Numerical and Analytical Method in Geomechnics, 2011, 35: 1059-1075. doi: 10.1002/nag.949
    [14]
    SCHUSTER M, KUNG G T C, JUANG C H, et al. Simplified model for evaluating damage potential of buildings adjacent to a braced excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1823-1835. doi: 10.1061/(ASCE)GT.1943-5606.0000161
    [15]
    LIANG R, XIA T, HUANG M, et al. Simplified analytical method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect[J]. Computers and Geotechnics, 2017, 81: 167-187. doi: 10.1016/j.compgeo.2016.08.017
    [16]
    ZHENG G, YANG X, ZHOU H, et al. Simplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations[J]. Computers and Geotechnics, 2018, 95: 119-128. doi: 10.1016/j.compgeo.2017.10.006
    [17]
    LEUNG C F, LIM J K, SHEN R F, et al. Behavior of pile groups subject to excavation-induced soil movement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(1): 58-65. doi: 10.1061/(ASCE)1090-0241(2003)129:1(58)
    [18]
    GOH A T C, WONG K S, TEH C I, et al. Pile response adjacent to braced excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(4): 383-386. doi: 10.1061/(ASCE)1090-0241(2003)129:4(383)
    [19]
    ONG D E L, LEUNG C E, CHOW Y K. Pile behavior due to excavation-induced soil movement in clay: I stable wall[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(1): 36-44. doi: 10.1061/(ASCE)1090-0241(2006)132:1(36)
    [20]
    MANA A L, CLOUGH G W. Prediction of movement for braced cuts in clay[J]. Journal of Geotechnical Engineering Division, 1981, 107(6): 759-777. doi: 10.1061/AJGEB6.0001150
    [21]
    CLOUGH G W, O’ROURKE T D. Construction induced movements of in situ walls[C]//Design and Performance of Earth Retaining Structure, Geotechnical Special Publication No. 25, ASCE, 1990, New York: 439-470.
    [22]
    KUNG G C, JUANG C H, HSIAO E L, et al. Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 731-747. doi: 10.1061/(ASCE)1090-0241(2007)133:6(731)
    [23]
    张爱军, 莫海鸿, 李爱国, 等. 基坑开挖对邻近桩基影响的两阶段分析方法[J]. 岩石力学与工程学报, 2013, 32(增刊1): 2746-2750. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1021.htm

    ZHANG Ai-jun, MO Hai-hong, LI Ai-guo, et al. Two-stage analysis method for behavior of adjacent piles due to foundation pit excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2746-2750. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1021.htm
    [24]
    木林隆, 黄茂松. 基坑开挖引起的周边土体三维位移场的简化分析[J]. 岩土工程学报, 2013, 35(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305003.htm

    MU Lin-long, HUANG Mao-song. Simplified method for analysis of soil movement induced by excavations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305003.htm
    [25]
    地基基础设计标准:DGJ08—11—2018[S]. 2018.

    Foundation Design Code: DGJ08—11—2018[S]. 2018. (in Chinese)
    [26]
    SKEMPTON A W, MACDONALD D H. The allowable settlements of buildings[J]. Proceedings of the Institution of Civil Engineers, 1956, 5(6): 727-768. doi: 10.1680/ipeds.1956.12202
    [27]
    FINNO R J, BRYSON L S. Response of building adjacent to stiff excavation support system in soft clay[J]. Journal of Performance of Constructed Facilities, 2002, 16(1): 10-20. doi: 10.1061/(ASCE)0887-3828(2002)16:1(10)
    [28]
    欧章煜, 谢百钩. 深开挖邻产保护之探讨[J]. 岩土工程学报, 2008, 30(增刊1): 509-517. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2008S1109.htm

    OU Chang-yu, HSIEH Pio-go. Building protection measures in deep excavations[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S1): 509-517. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2008S1109.htm
    [29]
    MU L, CHEN W, HUANG M, et al. Hybrid method for predicting the response of a pile-raft foundation to adjacent braced excavation[J]. International Journal of Geomechanics, 2020, 20(4): 04020026. doi: 10.1061/(ASCE)GM.1943-5622.0001627
  • Related Articles

    [1]HUANG Jianyou, YAN Yutao, DIAO Yu, ZHENG Gang, LI Kai, JIA Jianwei, LIU Yongchao. Horizontal deformation of piles controlled by capsule expansion technique[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 85-95. DOI: 10.11779/CJGE20230993
    [2]LI Jing, XU Zhong-hua, WANG Wei-dong. Three-dimensional finite element analysis of effects of foundation underpinning on deformation control of existing buildings adjacent to a deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 157-161. DOI: 10.11779/CJGE2017S2039
    [3]ZHANG Ju-shou, CAO Yang, GAO Yun-feng, WANG Chun-yan. Construction techniques for large deep foundation pits in deep silt layer[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 250-253. DOI: 10.11779/CJGE2014S2043
    [4]WENG Xiao-lin, ZHANG Chao, MA Hao-hao, SONG Wen-jia. Control criteria for differential settlement of widened road[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1705-1711.
    [5]CHEN Sheng-shui, LI Guo-ying, FU Zhong-zhi. Safety criteria and limit resistance capacity of high earth-rock dams subjected to earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 59-65.
    [6]LIU Shu-ya, OUYANG-Rong. Deformation of Shenzhen subway aroused by deep excavations andits risk control technology[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 638-643.
    [7]XIANG Wei, ZHANG Ai-jun, GAO Wei. Deformation predictions and control methods for excavation of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 634-637.
    [8]DING Yong-chun, CHENG Ze-kun, WANG Jian-hua, LI Yao-liang. Deformation of metro station excavation and its influence on nearby pile foundations of bridge[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 383-388.
    [9]ZHANG Zhi-hao, MA Lin, HAN Xiao-meng, HE Jing-yu. Frost heaving deformation control of pile-anchor retaining structure of deep foundation pits in seasonal frozen soil regions[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 65-71.
    [10]JIA Jian. Deflection controlling measures and practices of deep foundation pits by use of top-down excavation method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 304-308.
  • Cited by

    Periodical cited type(18)

    1. 姚嘉楠,王艳萍,袁辉,徐长节,方甫官,杨明雄,钟旭. 考虑任意荷载作用的刚性挡土墙非极限被动土压力理论研究. 科学技术与工程. 2025(03): 1197-1205 .
    2. 康凯,李宁,石卫,谭天翔,王姝婧. 深基坑开挖对临近建筑物的稳定性分析. 岩土工程技术. 2025(01): 89-96 .
    3. 汪敏营,赵升峰,邬喜春,李明东. 不同地面附加荷载作用下桩加支撑基坑支护特性研究. 佳木斯大学学报(自然科学版). 2024(02): 83-87+113 .
    4. 刘涛. 邻近地铁某基坑的关键技术措施. 建筑施工. 2024(05): 745-748+769 .
    5. 崔雨声. 水工建筑物基坑开挖支护对土体变形影响及仿真研究. 江西建材. 2024(08): 208-210 .
    6. 薛秀丽,廖欢,曾超峰,刘运思,曾兴. 既有地下结构水-土阻隔效应对基坑抽水引发地层变形影响机制. 岩土工程学报. 2023(01): 103-111 . 本站查看
    7. 陈静,罗良瑞,姚爱军,翟玉新,李晓阁,曹秀玲. 地下综合管廊穿越桥梁引起桩基变形控制研究. 施工技术(中英文). 2023(02): 56-60 .
    8. 张坤勇,张梦,聂美军,孙斌,刘江涛. 考虑开挖应力路径深基坑顺逆结合施工支护变形分析. 中国港湾建设. 2023(03): 29-37 .
    9. 黄智国. 基坑开挖对阳角区域坑边管桩基础受力变形影响的三维数值模拟研究. 广东土木与建筑. 2023(05): 7-11 .
    10. 虞国宏. 压力型扩体桩锚新型支护体系应用分析. 天津建设科技. 2023(03): 24-26 .
    11. 曾超峰,孙海昱,薛秀丽,宋伟炜,雷勇,陈秋南. 多含水层体系基坑抽水诱发邻近建筑桩基受力变形特性. 土木工程学报. 2023(08): 164-173+183 .
    12. 李天降,朱孟君,王哲,宋许根,甄洁,衣凡,雷华阳,郑刚,程雪松. 软土区管廊基坑柔性支护下基坑变形控制标准. 科学技术与工程. 2023(21): 9199-9206 .
    13. 王亚宁,刘淑宝,杨名冠,程天健,黄蕴晗. 基于数值模拟回归的桩基对既有建筑影响分析. 工业建筑. 2023(S1): 548-552 .
    14. 郝彦玉,柴尚云. 基坑开挖过程中的土体变形及影响因素分析. 建设监理. 2023(08): 101-104 .
    15. 杨岳峰. 软土基坑大变形对邻近建筑桩基的影响分析. 福建建设科技. 2023(05): 49-55 .
    16. 曾超峰,张祖浩,高文华,蔡钢,朱龙,陈宏波,薛秀丽,贺建清. 坑外群桩阻隔效应对基坑内抽水引发变形影响机制. 岩土工程学报. 2023(11): 2378-2386 . 本站查看
    17. 邵朝阳,肖智巧,赵子仪,吴磊,李天义. 止水帷幕对开挖后降水引发深基坑渗流场变化的控制效果. 南华大学学报(自然科学版). 2022(05): 29-39 .
    18. 张肖峰,许饶,辛侨. 广东地区地下变电站深基坑工程对周边环境影响数值分析. 武汉大学学报(工学版). 2022(S1): 22-27 .

    Other cited types(11)

Catalog

    Article views (370) PDF downloads (289) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return