• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LING Dao-sheng, SHI Chang-yu, ZHENG Jian-jing, ZHAO Yu, CHEN Yun-min. Non-inertial effects on matter motion in centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 226-235. DOI: 10.11779/CJGE202102002
Citation: LING Dao-sheng, SHI Chang-yu, ZHENG Jian-jing, ZHAO Yu, CHEN Yun-min. Non-inertial effects on matter motion in centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 226-235. DOI: 10.11779/CJGE202102002

Non-inertial effects on matter motion in centrifugal model tests

More Information
  • Received Date: July 29, 2020
  • Available Online: December 04, 2022
  • As the major scale model test equipment in geotechnical engineering, the centrifuge has become more widely used in the fields of explosions and landslides involving high-speed movement of materials with the continuous improvement of its test capabilities. The general expression for the acceleration of matter motion in the moving reference system is strictly derived. Secondly, the governing equation for particle motion in the centrifuge model container is established based on the Newton's second law for centrifuges at a constant rotating speed. The relative motion of the particle is essentially related to three non-inertial actions, including uniform centrifugal force, non-uniform centrifugal force and Coriolis force. The non-inertial effects on the relative motion of particles caused by the three non-inertial actions are studied, and the sensitivity of the factors such as the initial coordinates and the initial speed is quantitatively analyzed based on the analytical solution. It is shown that the coupling of the three non-inertial effects affects the governing equation for the relative motion of particles, which makes it impossible for the law of similarity in the conventional model tests to be established accurately. The influences of the Coriolis force on the non-inertial effects are generally greater than those of the non-uniform centrifugal force. The non-inertial effects on free-moving particles are significant, but the particle motion component parallel to the centrifuge axis is not affected by the non-inertial system effects.
  • [1]
    陈云敏, 韩超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12): 1887-1894. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112013.htm

    CHEN Yun-min, HAN Chao, LING Dao-sheng, et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1887-1894. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112013.htm
    [2]
    NG C W W. The state-of-the-art centrifuge modelling of geotechnical problems at HKUST[J]. Journal of Zhejiang University-Science A: Applied Physics & Engineering, 2014, 15(1): 1-21.
    [3]
    CRAIG W H. Geotechnical Centrifuges: Past, Present and Future[M]//TAYLOR R N ed. Geotechnical Centrifuge Technology, London: CRC Press, 1995: 1-18.
    [4]
    HU J, CHEN Z Y, ZHANG X D, et al. Underwater explosion in centrifuge part I: validation and calibration of scaling laws[J]. Science China Technological Sciences, 2017, 60(11): 1638-1657. doi: 10.1007/s11431-017-9083-0
    [5]
    马立秋, 张建民, 张武. 爆炸离心模型试验研究进展与展望[J]. 岩土力学, 2011, 32(9): 272-278. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201109048.htm

    MA Li-qiu, ZHANG Jian-ming, ZHANG Wu. Development and prospect for centrifugal blasting modeling[J]. Rock and Soil Mechanics, 2011, 32(9): 272-278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201109048.htm
    [6]
    周健, 杜强, 李业勋, 等. 无黏性土滑坡型泥石流形成机理的离心机模型试验研究[J]. 岩土工程学报, 2014, 36(11): 2010-2017. doi: 10.11779/CJGE201411006

    ZHOU Jian, DU Qiang, LI Ye-xun, et al. Centrifugal model tests on formation mechanism of landslide-type debris flows of cohesiveless soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2010-2017. (in Chinese) doi: 10.11779/CJGE201411006
    [7]
    TAYLOR R N. Centrifuges in Modeling: Principles and Scale Effects[M]. Boca Raton: CRC Press, 2018: 19-33.
    [8]
    王永志, 王海, 袁晓铭, 等. 土工离心试验应力相似差异特征与设计准则[J]. 岩土工程学报, 2017, 40(11). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811028.htm

    WANG Yong-zhi, WANG Hai, YUAN Xiao-ming, et al. Difference characteristics of stress similitude for geotechnical centrifuge modelling and design criteria[J]. Chinese Journal of Geotechnical Engineering, 2017, 40(11). (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811028.htm
    [9]
    SCHOFIELD A N. Cambridge geotechnical centrifuge operations[J]. Géotechnique, 1980, 30(3): 227-268. doi: 10.1680/geot.1980.30.3.227
    [10]
    陈丛新. 边坡稳定离心模型试验中离心力分布不均匀的影响[J]. 岩土力学, 1994, 15(4): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX404.004.htm

    CHEN Cong-xin. Influence of uneven centrifugal force distribution in slope stability centrifugal model test[J]. Rock and Soil Mechanics, 1994, 15(4): 39-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX404.004.htm
    [11]
    TOBITA T, ASHINO T, REN J, et al. Kyoto University LEAP-GWU-2015 tests and the importance of curving the ground surface in centrifuge modelling[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 650-662. doi: 10.1016/j.soildyn.2017.10.012
    [12]
    SCHOFIELD A N. An Introduction to Centrifuge Modelling[M]. Boca Raton: CRC Press, 2020: 1-9.
    [13]
    LEI G, SHI J. Physical meanings of kinematics in centrifuge modelling technique[J]. Rock and Soil Mechanics, 2003, 24(2): 188-193.
    [14]
    张敏, 吴宏伟. 边坡离心模型试验中的降雨模拟研究[J]. 岩土力学, 2007, 28(增刊1): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1011.htm

    ZHANG Min, NG C W W. Rainfall simulation techniques in centrifuge modelling of slopes[J]. Rock and Soil Mechanics, 2007, 28(S1): 53-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1011.htm
    [15]
    CAICEDO B, TRISTANCHO J, THOREL L. Mathematical and physical modelling of rainfall in centrifuge[J]. International Journal of Physical Modelling in Geotechnics, 2015, 15(3): 150-164.
    [16]
    SUÑOL F, GONZÁLEZ-CINCA R. Effects of gravity level on bubble formation and rise in low-viscosity liquids[J]. Physical Review E, 2015, 91(5): 053009.
    [17]
    SUÑOL F, GONZÁLEZ-CINCA R. Effects of gravity level on bubble detachment, rise, and bouncing with a free surface[J]. International Journal of Multiphase Flow, 2019, 113: 191-198.
    [18]
    BRANNON R M, BANERJEE B, BONIFASI C, et al. Simulation of buried explosives using recent advances in the Material Point Method[C]//Advances in Computational Mechanics: A Conference Celebrating the 70th Birthday of Thomas J R Hughes. 2013, San Diego, CA.
    [19]
    CABRERA M A, LEONARDI A, PENG C. Granular flow simulation in a centrifugal acceleration field[J]. Géotechnique, 2020, 70(10): 894-905.
    [20]
    王巧莎. 超重环境下水波模拟与传播特性研究[D]. 北京: 中国工程物理研究院, 2019.

    WANG Qiao-sha. Research on Simulation and Propagation Characteristics of Water Waves in Hypergravity Environment[D]. Beijing: China Academy of Engineering Physics, 2019. (in Chinese)
    [21]
    LOÁICIGA H A. The effect of the earth’s rotation on ground water motion[J]. Groundwater, 2007, 45(1): 98-100.
    [22]
    SEIFE C. Can the laws of physics be unified?[J]. Science, 2005, 309(5731): 82-82.
    [23]
    秦成刚, 邵成刚, 涂良成. 引力的本质是什么?[J]. 科学通报, 2017, 62: 1555. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201715001.htm

    QIN Cheng-gang, SHAO Cheng-gang, TU Liang-cheng. What is the nature of gravity?[J]. Chinese Science Bulletin, 2017, 62: 1555. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201715001.htm

Catalog

    Article views (314) PDF downloads (249) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return