Citation: | LING Dao-sheng, SHI Chang-yu, ZHENG Jian-jing, ZHAO Yu, CHEN Yun-min. Non-inertial effects on matter motion in centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 226-235. DOI: 10.11779/CJGE202102002 |
[1] |
陈云敏, 韩超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12): 1887-1894. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112013.htm
CHEN Yun-min, HAN Chao, LING Dao-sheng, et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1887-1894. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112013.htm
|
[2] |
NG C W W. The state-of-the-art centrifuge modelling of geotechnical problems at HKUST[J]. Journal of Zhejiang University-Science A: Applied Physics & Engineering, 2014, 15(1): 1-21.
|
[3] |
CRAIG W H. Geotechnical Centrifuges: Past, Present and Future[M]//TAYLOR R N ed. Geotechnical Centrifuge Technology, London: CRC Press, 1995: 1-18.
|
[4] |
HU J, CHEN Z Y, ZHANG X D, et al. Underwater explosion in centrifuge part I: validation and calibration of scaling laws[J]. Science China Technological Sciences, 2017, 60(11): 1638-1657. doi: 10.1007/s11431-017-9083-0
|
[5] |
马立秋, 张建民, 张武. 爆炸离心模型试验研究进展与展望[J]. 岩土力学, 2011, 32(9): 272-278. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201109048.htm
MA Li-qiu, ZHANG Jian-ming, ZHANG Wu. Development and prospect for centrifugal blasting modeling[J]. Rock and Soil Mechanics, 2011, 32(9): 272-278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201109048.htm
|
[6] |
周健, 杜强, 李业勋, 等. 无黏性土滑坡型泥石流形成机理的离心机模型试验研究[J]. 岩土工程学报, 2014, 36(11): 2010-2017. doi: 10.11779/CJGE201411006
ZHOU Jian, DU Qiang, LI Ye-xun, et al. Centrifugal model tests on formation mechanism of landslide-type debris flows of cohesiveless soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2010-2017. (in Chinese) doi: 10.11779/CJGE201411006
|
[7] |
TAYLOR R N. Centrifuges in Modeling: Principles and Scale Effects[M]. Boca Raton: CRC Press, 2018: 19-33.
|
[8] |
王永志, 王海, 袁晓铭, 等. 土工离心试验应力相似差异特征与设计准则[J]. 岩土工程学报, 2017, 40(11). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811028.htm
WANG Yong-zhi, WANG Hai, YUAN Xiao-ming, et al. Difference characteristics of stress similitude for geotechnical centrifuge modelling and design criteria[J]. Chinese Journal of Geotechnical Engineering, 2017, 40(11). (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811028.htm
|
[9] |
SCHOFIELD A N. Cambridge geotechnical centrifuge operations[J]. Géotechnique, 1980, 30(3): 227-268. doi: 10.1680/geot.1980.30.3.227
|
[10] |
陈丛新. 边坡稳定离心模型试验中离心力分布不均匀的影响[J]. 岩土力学, 1994, 15(4): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX404.004.htm
CHEN Cong-xin. Influence of uneven centrifugal force distribution in slope stability centrifugal model test[J]. Rock and Soil Mechanics, 1994, 15(4): 39-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX404.004.htm
|
[11] |
TOBITA T, ASHINO T, REN J, et al. Kyoto University LEAP-GWU-2015 tests and the importance of curving the ground surface in centrifuge modelling[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 650-662. doi: 10.1016/j.soildyn.2017.10.012
|
[12] |
SCHOFIELD A N. An Introduction to Centrifuge Modelling[M]. Boca Raton: CRC Press, 2020: 1-9.
|
[13] |
LEI G, SHI J. Physical meanings of kinematics in centrifuge modelling technique[J]. Rock and Soil Mechanics, 2003, 24(2): 188-193.
|
[14] |
张敏, 吴宏伟. 边坡离心模型试验中的降雨模拟研究[J]. 岩土力学, 2007, 28(增刊1): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1011.htm
ZHANG Min, NG C W W. Rainfall simulation techniques in centrifuge modelling of slopes[J]. Rock and Soil Mechanics, 2007, 28(S1): 53-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1011.htm
|
[15] |
CAICEDO B, TRISTANCHO J, THOREL L. Mathematical and physical modelling of rainfall in centrifuge[J]. International Journal of Physical Modelling in Geotechnics, 2015, 15(3): 150-164.
|
[16] |
SUÑOL F, GONZÁLEZ-CINCA R. Effects of gravity level on bubble formation and rise in low-viscosity liquids[J]. Physical Review E, 2015, 91(5): 053009.
|
[17] |
SUÑOL F, GONZÁLEZ-CINCA R. Effects of gravity level on bubble detachment, rise, and bouncing with a free surface[J]. International Journal of Multiphase Flow, 2019, 113: 191-198.
|
[18] |
BRANNON R M, BANERJEE B, BONIFASI C, et al. Simulation of buried explosives using recent advances in the Material Point Method[C]//Advances in Computational Mechanics: A Conference Celebrating the 70th Birthday of Thomas J R Hughes. 2013, San Diego, CA.
|
[19] |
CABRERA M A, LEONARDI A, PENG C. Granular flow simulation in a centrifugal acceleration field[J]. Géotechnique, 2020, 70(10): 894-905.
|
[20] |
王巧莎. 超重环境下水波模拟与传播特性研究[D]. 北京: 中国工程物理研究院, 2019.
WANG Qiao-sha. Research on Simulation and Propagation Characteristics of Water Waves in Hypergravity Environment[D]. Beijing: China Academy of Engineering Physics, 2019. (in Chinese)
|
[21] |
LOÁICIGA H A. The effect of the earth’s rotation on ground water motion[J]. Groundwater, 2007, 45(1): 98-100.
|
[22] |
SEIFE C. Can the laws of physics be unified?[J]. Science, 2005, 309(5731): 82-82.
|
[23] |
秦成刚, 邵成刚, 涂良成. 引力的本质是什么?[J]. 科学通报, 2017, 62: 1555. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201715001.htm
QIN Cheng-gang, SHAO Cheng-gang, TU Liang-cheng. What is the nature of gravity?[J]. Chinese Science Bulletin, 2017, 62: 1555. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201715001.htm
|