• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Zhi-xiang, SHAO Long-tan, LI Shun-qun, GUO Xiao-xia, TIAN Xiao-jian. Design of three-dimensional true earth pressure sensor and calculation of stress parameters[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2138-2145. DOI: 10.11779/CJGE202011020
Citation: CHEN Zhi-xiang, SHAO Long-tan, LI Shun-qun, GUO Xiao-xia, TIAN Xiao-jian. Design of three-dimensional true earth pressure sensor and calculation of stress parameters[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2138-2145. DOI: 10.11779/CJGE202011020

Design of three-dimensional true earth pressure sensor and calculation of stress parameters

More Information
  • Received Date: December 30, 2019
  • Available Online: December 05, 2022
  • The stress state is the basis for evaluating the deformation and strength of soil. The maximum principal stress and its direction are the important basis for determining the generation and development process of sliding surface of slopes, foundation pits and other structures. To study the real three-dimensional stress state of a point in the soil, based on the calculation relationship between the normal stress and the stress state and considering the test errors caused by the rotation of the device in the test process, a test device named three-dimensional true earth pressure sensor is designed to measure the normal stress in 6 directions and 3 angles around the axis in soil. The three-dimensional true earth pressure sensor is composed of a high-strength polyhedron base, 6 micro earth pressure cells, a micro pore water pressure cell, and a micro inclination sensor. It can determine the total stress and effective stress in 6 directions, and calculate the total stress state and effective stress state of soil. The three-dimensional true earth pressure sensor is used in the one-dimensional loading-unloading cycle of a fly ash, and the test results are compared with the theoretical values calculated by the Boussinesq method. Meanwhile, the 3 principal stresses and their directions, the Bishop constant (b), and the Lode's angle (θ) are calculated according to the obtained three-dimensional stress state, and the relationship between the vertical stress and the vertical strain in each loading process is analyzed. The results show that the rotation angles caused in the embedment and test processes will cause test errors, and these errors will increase with the increase of the test values. The direction of the maximum principal stress does not coincide with the loading direction in the one-dimensional loading-unloading process. With the increase of loading- unloading cycle times, the value and direction of the principal stress will gradually stabilize in a range, and the stress-strain relationship of soil also tends to be gentle. The mechanical parameters determined by the three-dimensional true earth pressure sensor can be consistent with the theory of soil mechanics, and the proposed device has a technical basis for the study of soil strength.
  • [1]
    PYTKA J. Effects of repeated rolling of agricultural tractors on soil stress and deformation state in sand and loess[J]. Soil & Tillage Research, 2005, 82(1): 77-88.
    [2]
    COLLINS I F. The nature of stress and velocity characteristics for critical stress states[J]. Géotechnique, 1990, 40(1): 125-129. doi: 10.1680/geot.1990.40.1.125
    [3]
    FORTUNA S. Validation of Lade's failure criteria at overconsolidated general stress states[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(1): 105-108. doi: 10.1061/(ASCE)GT.1943-5606.0000404
    [4]
    SHAO L, GUO X, LIU S. et al. Effective Stress and Equilibrium Equation for Soil Mechanics[M]. Taylor & Francis: CRC Press, 2017.
    [5]
    钱建固, 黄茂松. 复杂应力状态下岩土体的非共轴塑性流动理论[J]. 岩石力学与工程学报, 2006, 25(6): 1259-1264. doi: 10.3321/j.issn:1000-6915.2006.06.026

    QIAN Jian-gu, HUANG Mao-song. Non-coaxial plasticflow theory in multi-dimensional stress space[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1259-1264. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.06.026
    [6]
    路德春, 姚仰平, 周安楠. 土体平面应变条件下的主应力关系[J]. 岩石力学与工程学报, 2006, 25(11): 2320-2326. doi: 10.3321/j.issn:1000-6915.2006.11.023

    LU De-chun, YAO Yang-ping, ZHOU An-nan. Relationship between principal stresses of soil mass under plane strain condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2320-2326. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.11.023
    [7]
    张宏, 李顺群, 张少峰, 等. 三维应力计的工作原理及误差分析[J]. 土木建筑与环境工程, 2015, 37(5): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201505008.htm

    ZHANG Hong, LI Shun-qun, ZHANG Shao-feng, et al. Principle and errors analtsis of the three-dimensional stress apparatuses[J]. Journal of Civil, Architectural & Environmental Engineering, 2015, 37(5): 54-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201505008.htm
    [8]
    李跃军. 关于应力张量分量和应力物理分量间的转换问题[J]. 力学与实践, 1998, 20(1): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS801.005.htm

    LI Yue-jun. On the transformation between stress tensor component and stress physical component[J]. Mechanics and Engineering, 1998, 20(1): 20-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS801.005.htm
    [9]
    陈春红, 刘素锦, 王钊. 土压力盒的标定[J]. 中国农村水利水电, 2007(2): 29-33. doi: 10.3969/j.issn.1007-2284.2007.02.011

    CHEN Chun-hong, LIU Su-jin, WANG Zhao. Calibration of earth pressure cell[J]. China Rural water and Hydropower, 2007(2): 29-33. (in Chinese) doi: 10.3969/j.issn.1007-2284.2007.02.011
    [10]
    WANG S H, ZUO D W, WANG M, et al. Modified layer removal method for measurement of residual stress distribution in thick pre-stretched aluminum plate[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2004, 21(4): 286-290. doi: 10.3969/j.issn.1005-1120.2004.04.009
    [11]
    李顺群, 夏锦红, 王杏杏. 一种三维土压力盒的工作原理及其应用[J]. 岩土力学, 2016, 37(增刊2): 337-342, 348. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2042.htm

    LI Shun-qun, XIA Jin-hong, WANG Xing-xing. Principle and its application of a three-dimensional earth pressure cell[J]. Rock and Soil Mechanics, 2016, 37(S2): 337-342, 348. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2042.htm
    [12]
    LU D C, DU X L, ZHOU A N, et al. The principal stresses of soil mass in the direction of plane strain[J]. Advanced Materials Research, 2011: 2657-2665.
    [13]
    孔宪京, 宁凡伟, 刘京茂, 等. 基于超大型三轴仪的堆石料缩尺效应研究[J]. 岩土工程学报, 2019, 41(2): 255-261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902003.htm

    KONG Xian-jing, NING Fan-wei, LIU Jing-mao, et al. Scale effect of rockfill materials using super-large triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 255-261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902003.htm
    [14]
    蔡正银, 吴诗阳, 武颖利, 等. 高地震烈度区深厚覆盖砂层液化研究[J]. 岩土工程学报, 2020, 42(3): 405-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003003.htm

    CAI Zheng-yin, WU Shi-yang, WU Ying-li, et al. Liquefaction of deep overburden layers in zones with high earthquake intensity[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 405-412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003003.htm
    [15]
    刘开源, 许成顺, 贾科敏, 等. 薄膜压力传感器(FSR)曲面土压力测量研究[J]. 岩土工程学报, 2020, 42(3): 584-591. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003028.htm

    LIU Kai-yuan, XU Cheng-shun, JIA Ke-min, et al. Measurement of earth pressures on curved surface of thin film pressure sensor[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 584-591. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003028.htm
    [16]
    李顺群, 陈之祥, 桂超, 夏锦红, 张少峰. 一类三维土压力盒的设计及试验验证[J]. 中国公路学报, 2018, 31(1): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801003.htm

    LI Shun-qun, CHEN Zhi-xiang, GUI Chao, et al. Design and experimental verification of a kind of three-dimensional earth pressure cells[J]. China Journal of Highway and Transport, 2018, 31(1): 11-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801003.htm
    [17]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2016.

    LI Guang-xin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2016. (in Chinese)
    [18]
    黄文熙. 土的工程性质[M]. 北京: 水利电力出版社, 1983.

    HUANG Wen-xi. Engineering Properties of Soil[M]. Beijing: Water Resources and Electric Power Press, 1983. (in Chinese)
    [19]
    钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006.

    ZHONG Wan-xie. Symplectic Method in Applied Mechanics[M]. Beijing: Higher Education Press, 2006. (in Chinese)
  • Related Articles

    [1]LIU Yuanpeng, TANG Zhaoguang, LI Yurun, WANG Yongzhi, ZHU Yaoting, LIU Hongshuai. Reliability evaluation of flexibly soft contact earth pressure cell testing based on centrifugal tests on tunnels[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 75-80. DOI: 10.11779/CJGE2024S10042
    [2]JIANG Yan-bin, HE Ning, HE Bin, WANG Zhang-chun, ZHANG Zhong-liu, ZHU Rui. Distribution of pile-soil stress in centrifugal modelling of composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 85-89. DOI: 10.11779/CJGE2020S1017
    [3]LIU Kai-yuan, XU Cheng-shun, JIA Ke-min, ZHANG Xiao-ling. Measurement of earth pressures on curved surface of thin film pressure sensor[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 584-591. DOI: 10.11779/CJGE202003021
    [4]XIE Tao, LUO Qiang, ZHANG Liang, JIANG Liang-wei, LIAN Ji-feng. Relationship between earth pressure and wall displacement based on Coulomb earth pressure model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 194-200. DOI: 10.11779/CJGE201801021
    [5]SUN Jian-sheng. Error tendency for studying earth pressure on retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1324-1329. DOI: 10.11779/CJGE201607021
    [6]RUI Rui, WU Duan-zheng, HU Gang, XU Lu-chang, XIA Yuan-you. Calibration tests on diaphragm-type pressure cells[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 837-845. DOI: 10.11779/CJGE201605009
    [7]ZHANG Hai-feng, MA Bao-song, WANG Fu-zhi. Influence of passive soil arching effect on matching error of earth pressure cells[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 350-354. DOI: 10.11779/CJGE201602020
    [8]Sensitivity analysis of parameters of Rankine's earth pressure with inclined surface considering intermediate principal stress[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10).
    [9]JIANG Pengming, LU Changfeng, MEI Guoxiong. Rigorous solution of earth pressure under discontinuous stress boundary[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 498-502.
    [10]FAN Wen, SHENG Zhujiang, YU Maohong. Upper-bound limit analysis of earth pressure based on unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1147-1153.
  • Cited by

    Periodical cited type(4)

    1. 刘亚如,陈旋,王朝雅. 建筑隔震技术研究综述. 江西建材. 2024(06): 9-10 .
    2. 尹志勇,孙海峰,景立平,董瑞,徐琨鹏. 基于玻璃珠-砂垫层的岩土隔震系统隔震效果影响因素分析. 地震工程与工程振动. 2022(05): 237-248 .
    3. 庄海洋,于旭,刘英. 土-桩-隔震结构非线性动力相互作用分析方法综述. 震灾防御技术. 2022(04): 632-642 .
    4. 孙海峰,尹志勇,景立平,董瑞,徐琨鹏. 输入地震动对砂垫层岩土隔震系统隔震效果的影响. 地震工程与工程振动. 2021(06): 222-230 .

    Other cited types(1)

Catalog

    Article views (322) PDF downloads (160) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return