• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Kai-yuan, XU Cheng-shun, JIA Ke-min, ZHANG Xiao-ling. Measurement of earth pressures on curved surface of thin film pressure sensor[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 584-591. DOI: 10.11779/CJGE202003021
Citation: LIU Kai-yuan, XU Cheng-shun, JIA Ke-min, ZHANG Xiao-ling. Measurement of earth pressures on curved surface of thin film pressure sensor[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 584-591. DOI: 10.11779/CJGE202003021

Measurement of earth pressures on curved surface of thin film pressure sensor

More Information
  • Received Date: July 09, 2019
  • Available Online: December 07, 2022
  • Measuring the earth pressure with rigid soil pressure cell (SPC) is a common test method in geotechnical tests. However, the traditional rigid soil pressure cell is not suitable for measuring the earth pressures on curved surface such as piles or buried pipelines because of its limitations such as diaphragm subsidence, "embedding" effect, incomplete fitting of measuring surface and large buried space. The measurement circuit and calibration devices are designed for the characteristics of the thin film pressure sensor. The calibration characteristics are analyzed, and the influences of deflection on the measurement of the film pressure sensor are preliminarily investigated. Finally, the capabilities of the traditional rigid soil pressure cell and the thin film pressure sensor to measure the soil pressures on curved surface are compared and analyzed through experiments. The results show that the thin film pressure sensor can effectively avoid the "embedding" effect, reduce the measurement error, and is easy to install.
  • [1]
    周敏, 杜延军, 王非, 等. 地层沉陷中埋地HDPE管道力学状态及模型试验分析[J]. 岩土工程学报, 2016, 38(2): 253-262. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602011.htm

    ZHOU Min, DU Yan-jun, WANG Fei, et al. Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 254-262. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602011.htm
    [2]
    芮瑞, 吴端正, 胡港, 等. 模型试验中膜式土压力盒标定及其应用[J]. 岩土工程学报, 2016, 38(5): 2136-2136. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605009.htm

    RUI Rui, WU Duan-zheng, HU Gang, et al. Calibration tests on diaphragm-type pressure cells[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 837-845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605009.htm
    [3]
    SELIG E T. Soil stress gage calibration[J]. Geotechnical Testing Journal, 1980, 3(4): 153-158.
    [4]
    CLAYTON C R I, BICA A V D. The design of diaphragm-typeboundary total stress[J]. Géotechnique, 1993, 43(4): 523-535. doi: 10.1680/geot.1993.43.4.523
    [5]
    WACHMAN G, LABUZ J. Soil-structure interaction of an earth pressure cell[J]. Journal of Geotechnical and Geoe-nvironmental Engineering, 2011, 137(9): 843-845. doi: 10.1061/(ASCE)GT.1943-5606.0000501
    [6]
    张立祥, 罗强, 张良, 等. 土压力传感器在硬土介质中的非线性响应分析[J]. 岩土力学, 2013(12): 3632-3640. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312044.htm

    ZHANG Li-xiang, LUO Qiang, ZHANG Liang, et al. Analysis of nonlinear response of soil pressure transducer in high-modulus soil[J]. Rock and Soil Mechanics, 2013(12): 3632-3640. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312044.htm
    [7]
    WELLER W A, KULHAWY F H. Factors affecting stress cell measurements in soil[J]. Journal of the Geotechnical Engineering Division, 1982, 108(12): 1529-1548. doi: 10.1061/AJGEB6.0001393
    [8]
    FANG Y S, CHEN T J, WU B F. Passive earth pressures with various wall movements[J]. Journal of Geotechnical Engineering, 1994, 120(8): 1307-1323. doi: 10.1061/(ASCE)0733-9410(1994)120:8(1307)
    [9]
    SEHN A L. Experimental Study of Earth Pressures on Retaining Structures[D]. Virginia: Virginia Tech, 2005.
    [10]
    BROWN D A, MORRISON C, REESE L C. Lateral load behavior of pile group in sand[J]. Journal of Geotechnical Engineering, 1988, 114(11): 1261-1276. doi: 10.1061/(ASCE)0733-9410(1988)114:11(1261)
    [11]
    WILSON D W. Soil-Pile-Superstructure Interaction in Liquefying Sand and Soft Clay[D]. California: University of California, 1998.
    [12]
    ZHANG L, SILVA F, GRISMALA R. Ultimate lateral resistance to piles in cohesionless soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(1): 78-83. doi: 10.1061/(ASCE)1090-0241(2005)131:1(78)
    [13]
    YANG K, LIANG R. Methods for deriving py curves from instrumented lateral load tests[J]. Geotechnical Testing Journal, 2006, 30(1): 31-38.
    [14]
    LIN H, NI L, SULEIMAN M T, et al. Interaction between laterally loaded pile and surrounding soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 141(4): 04014119.
    [15]
    孙秀耀. 柔性力敏薄膜及阵列压力传感器的研究[D]. 成都: 电子科技大学, 2017.

    SUN Xiu-yao. Study on Flexible Pressure Sensitive Film and The Array of Pressure Sensor[D]. Chengdu: University of Electronic Science and Technology of China, 2017. (in Chinese)
    [16]
    TALESNICK M. Measuring soil contact pressure on a solid boundary and quantifying soil arching[J]. Geotechnical Testing Journal, 2005, 28(2): 171-179.
    [17]
    PAIKOWSKY S G, HAJDUK E L. Calibration and use of grid-based tactile pressure sensors in granular material[J]. Geotechnical Testing Journal, 1997, 20(2): 218-241. doi: 10.1520/GTJ10741J
    [18]
    PALMER M C, O'ROURKE T D, OLSON N A, et al. Tactile pressure sensors for soil-structure interaction assessment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1638-1645. doi: 10.1061/(ASCE)GT.1943-5606.0000143
    [19]
    GAO Y, WANG Y H. Calibration of tactile pressure sensors for measuring stress in soils[J]. Geotechnical Testing Journal, 2013, 36(4): 568-574.
    [20]
    PAIKOWSKY S G, PALMER C J, ROLWES L E. The use of tactile sensor technology for measuring soil stress distribution[C]//GeoCongress 2006: Geotechnical Engineering in the Information Technology Age. Atlanta, 2006: 1-6.
    [21]
    张紫涛, 徐添华, 徐韵, 等. 薄膜压力传感器在土工试验中的适用性初探[J]. 岩土工程学报, 2016, 39(增刊1): 209-213. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S1042.htm

    ZHANG Zi-tao, XU Tian-hua, XU Yun, et al. Feasibility of applying tactile pressure sensors in geotechnical tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 39(S1): 209-213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S1042.htm
    [22]
    廖波, 周檀君, 季雨坤. 薄膜式土压力分布传感器研发及试验研究[J]. 传感技术学报, 2018, 31(1): 19-24. doi: 10.3969/j.issn.1004-1699.2018.01.004

    LIAO Bo, ZHOU Tan-jun, JI Yu-kun. Experimental research and development of thin-film soil pressure distribution sensor[J]. Chinese Journal of Sensors and Actuators, 2018, 31(1): 19-24. (in Chinese) doi: 10.3969/j.issn.1004-1699.2018.01.004
    [23]
    KENARSARI A E, VITTON S J, BEARD J E, et al. Tactile pressure sensors to measure ground pressure from tractor tire loads[J]. Geotechnical Testing Journal, 2018, 41(6): 1166-1173.
    [24]
    SULEIMAN M T, NI L, HELM J D, et al. Soil-pile interaction for a small diameter pile embedded in granular soil subjected to passive loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5): 04014002. doi: 10.1061/(ASCE)GT.1943-5606.0001081
    [25]
    AHMED M R, TRAN V D H, MEGUID M A. On the role of geogrid reinforcement in reducing earth pressure on buried pipes: experimental and numerical investigations[J]. Soils and Foundations, 2015, 55(3): 588-599. doi: 10.1016/j.sandf.2015.04.010
    [26]
    JAKY J. Pressure in silos[C]//Proceedings of the Second International Conference on Soil Mechanics and Foundation Engineering, Balkema, 1948, Berkeley: 103-10.
    [27]
    BROOKER E W, IRELAND H O. Earth pressures at rest related to stress history[J]. Canadian Geotechnical Journal, 1965, 2(1): 1-15. doi: 10.1139/t65-001
    [28]
    HENDRON A J. The Behavior of Sand in One Dimensional Compression[D]. Champaign: University of Illinois, 1963.
    [29]
    BOLTON M D. A Guide to Soil Mechanics[M]. Austin: University of Texas Press, 1991.
    [30]
    EI SHARIF M, ABDEL A, YEHIA K T, et al. Theoretical study of earth pressure at-rest for sandy soils[J]. Journal of Engineering Sciences, 2011, 39(1): 1-13.
  • Cited by

    Periodical cited type(16)

    1. 郭冬冬,朱怀龙,刘俊杰,王志安. 薄膜压力传感器在液压振动沉桩试验中的应用. 广东建材. 2024(03): 77-80 .
    2. 栾兆群,白鹏,王海永. 一种新型振弦式土压力盒的结构设计分析. 现代制造技术与装备. 2024(05): 45-47 .
    3. 王永志,杨阳,徐光明,汤兆光,张雪东,孙锐,周燕国. 岩土离心模型试验软接触式微型土压计研制及性能评价. 岩土工程学报. 2024(08): 1655-1664 . 本站查看
    4. 潘文雅,陈宏同,周良绩. 高空作业防坠器防坠制动状态监测与预警方法. 机械制造与自动化. 2024(06): 185-189 .
    5. 朱怀龙,黄春梅. 薄膜压力传感器在打桩试验中的标定研究. 铁道建筑技术. 2023(05): 17-20 .
    6. 贾科敏,许成顺,杜修力,张小玲,崔春义. 液化侧向扩展场地-群桩基础-结构体系地震破坏反应大型振动台试验方案设计. 工程力学. 2023(07): 121-136 .
    7. 黄大维,彩国庆,徐长节,罗文俊,胡光静,詹涛. 水囊土压力计研制与试验验证研究. 华东交通大学学报. 2023(04): 93-102 .
    8. 于化月,李顺群,万勇,郭林坪,陈之祥. 加卸载循环下挡墙后砂土的三维应力状态测试研究. 土木工程学报. 2023(S1): 35-42 .
    9. 周会娟,余尚江,陈晋央,陈显,孟晓洁. 一种双面感压式光纤土压力传感器. 兵工学报. 2023(S1): 132-137 .
    10. 姜彦彬,何斌,王艳芳,陈盛原,何宁. 桩承式路堤桩帽顶面土压测试代表性分析. 公路. 2022(04): 1-7 .
    11. 李茂粟,赵弘,黄旭. 模拟砂箱3D打印压力测量系统PSO模型预测分析. 今日制造与升级. 2022(11): 140-145 .
    12. 邢心魁,宁博宏,林揽日,丁家玮. 光纤光栅土压力盒设计. 仪表技术与传感器. 2021(03): 14-18 .
    13. 洪成雨,鲍成志,武亚军,张一帆,王南苏,娄在明. 增材制造制备性能可控的FBG压力传感器研究. 电子测量与仪器学报. 2021(04): 30-38 .
    14. 李培刚,赵雄,刘丹,李俊奇,霍钊,宣淦清. 薄膜压力传感器混凝土柱压力监测可行性研究. 铁道标准设计. 2021(12): 91-95+122 .
    15. 陈之祥,邵龙潭,李顺群,郭晓霞,田筱剑. 三维真土压力盒的设计与应力参数的计算. 岩土工程学报. 2020(11): 2138-2145 . 本站查看
    16. 鲍成志,洪成雨,孙德安,苏栋. 增材制造碳纤维FBG土压力传感器的研发与验证. 光学学报. 2020(21): 22-30 .

    Other cited types(10)

Catalog

    Article views (486) PDF downloads (430) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return