Citation: | MA Ya-lina, CUI Zhen, SHENG Qian, ZHOU Guang-xin, WANG Tian-qiang. Influences of normal fault dislocation on response of surrounding rock and lining system based on discrete-continuous coupling simulation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2088-2097. DOI: 10.11779/CJGE202011014 |
[1] |
徐前卫, 程盼盼, 朱合华, 等. 跨断层隧道围岩渐进性破坏模型试验及数值模拟[J]. 岩石力学与工程学报, 2016, 35(3): 5-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603001.htm
XU Qian-wei, CHENG Pan-pan, ZHU He-hua, et al. Experimental study and numerical simulation on progressive failure characteristics of the fault-crossing tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Enginnering. 2016, 35(3): 5-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603001.htm
|
[2] |
岩土工程勘察规范:GB50021—2001[S]. 2001.
Code for Investigation of Geotechnical Engineering: GB50021—2001[S]. 2001. (in Chinese)
|
[3] |
KENNER S J, SEGALL P. Postseismic deformation following the 1906 San Francisco earthquake[J]. J Geophys Res Solid Earth, 2000, 105: 13195-13209. doi: 10.1029/2000JB900076
|
[4] |
WANG W L, WANG T T, SU J J, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake[J]. Tunn Undergr Space Technol Inc Trenchless Technol Res, 2001, 16: 133-150. doi: 10.1016/S0886-7798(01)00047-5
|
[5] |
崔光耀, 纪磊, 王道远, 等. 汶川地震断层破碎带段隧道结构震害分析及震害机理研究[J]. 土木工程学报, 2013(11): 130-135. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201311019.htm
CUI Guang-yao, JI Lei, WANG Dao-yuan, et al. Study of model test for anti-breaking technology of reducing dislocation layer undering stick-slip fault dislocation of metro tunnel[J]. China Civil Engineering Journal, 2013(11): 130-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201311019.htm
|
[6] |
AHMADI M, MOOSAVI M, JAFARI M K. Experimental investigation of reverse fault rupture propagation through wet granular soil[J]. Engineering Geology, 2018, 239: 229-240. doi: 10.1016/j.enggeo.2018.03.032
|
[7] |
LIN M, CHUNG C, JENG F, et al. The deformation of overburden soil induced by thrust faulting and its impact on underground tunnels[J]. Engineering Geology, 2007, 92(3/4): 110-132.
|
[8] |
CAI Q P, PENG J M, CHARLES W W N, et al. Centrifuge and numerical modelling of tunnel intersected by normal fault rupture in sand[J]. Computers and Geotechnics, 2019, 111: 137-146. doi: 10.1016/j.compgeo.2019.03.010
|
[9] |
KIANI M, AKHLAGHI T, GHALANDARZADEH A. Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults[J]. Tunnelling and Underground Space Technology, 2016, 51: 108-119. doi: 10.1016/j.tust.2015.10.005
|
[10] |
刘学增, 王煦霖, 林亮伦. 45°倾角正断层粘滑错动对隧道影响试验分析[J]. 同济大学学报(自然科学版), 2014, 42(1): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201401009.htm
LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Modeling experiment on effect of normal fault with 45° dip angle stick-slip dislocation on tunnel[J]. Journal of Tongji University (Natural Science), 2014, 42(1): 44-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201401009.htm
|
[11] |
刘学增, 王煦霖, 林亮伦. 60°倾角正断层黏滑错动对山岭隧道影响的试验研究[J]. 土木工程学报, 2014, 47(2): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201402016.htm
LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Model experimental study on influence of normal fault with 60° dip angle stick-slip dislocation on mountain tunnel[J]. China Civil Engineering Journal, 2014, 47(2): 121-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201402016.htm
|
[12] |
刘学增, 王煦霖, 林亮伦. 75°倾角正断层黏滑错动对公路隧道影响的模型试验研究[J]. 岩石力学与工程学报, 2013, 32(8): 1714-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308026.htm
LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Model experiment on effect of normal fault with 75°dipangle stick-slip dislocation on highway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1714-1720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308026.htm
|
[13] |
MOHAMMAD H, ABBAS S. DEM-aided study of shear band formation in dip-slip faulting through granular soils[J]. Computers and Geotechnics, 2016, 71: 221-236.
|
[14] |
NAEIJ M, SOROUSH A, JANVANMARDI Y. Numerical investigation of the effects of embedment on the reverse fault-foundation interaction[J]. Computers and Geotechnics, 2019, 113: 1-12.
|
[15] |
GHADIMI C A, TAHGHIGHI H. Numerical finite element analysis of underground tunnel crossing an active reverse fault: a case study on the Sabzkouh segmental tunnel[J]. Geomechanics and Geoengineering, 2019: 1-12.
|
[16] |
JEON S, KIM J, SEO Y, et al. Effect of a fault and weak plane on the stability of a tunnel in rock-a scaled model test and numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 658-663.
|
[17] |
Itasca Consulting Group Inc. PFC (Particle Flow Code) User's Manual Version 5.0[M]. Minneapolis: Itasca Consulting Group Inc., 2014.
|
[18] |
Itasca Consulting Group Inc. FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) User's Manual Version 6.0[M]. Minneapolis: Itasca Consulting Group Inc., 2017.
|
[19] |
BERTULANI C A. Relativistic continuum-continuum coupling in the dissociation of halo nuclei[J]. Physical Review Letters, 2005, 94(7): 072701.
|
[20] |
CAI M, KAISER P K, MORIOKA H, et al. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations[J]. Int J Rock Mech Min Sci, 2007, 44: 550-564.
|
[21] |
SEVI A, GE L. Cyclic behaviors of railroad ballast within theparallel gradation scaling framework[J]. Journal of Materialsin Civil Engineering, 2012, 24(7): 797-804.
|
[1] | LÜ Xi-lin, PANG Bo, ZHU Chang-gen, ZHANG Jia-feng, XU Ke-feng, MA Quan. Physical model tests on load-sharing characteristics of piles and soils in pile- supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 50-53. DOI: 10.11779/CJGE2022S2011 |
[2] | CHEN Jian-feng, GU Zi-ang, WANG Xin-tao, NIU Fu-jun, YE Guan-bao, FENG Shou-zhong. Behaviour of embankment on composite foundation with geosynthetic-encased stone columns under freeze-thaw condition[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1393-1400. DOI: 10.11779/CJGE202008003 |
[3] | CHEN Jian-feng, LI Liang-yong, XU Chao, FENG Shou-zhong. Centrifugal model tests on composite foundation reinforced by geosynthetic- encased stone columns under embankment loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 932-938. DOI: 10.11779/CJGE201805019 |
[4] | ZHANG Hao, SHI Ming-lei, GUO Yuan-cheng. Analytic model for load effects in geosynthetic-reinforced and pile-supported embankment based on segmented load transfer algorithm[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1630-1639. DOI: 10.11779/CJGE201609010 |
[5] | YANG Tao, WANG Gang-gang, YAN Ye-qiang, LI Guo-wei. Shape of soil arching and development of its effect in a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 731-735. DOI: 10.11779/CJGE201404018 |
[6] | FAN Li-bin, ZHANG Ding-wen, LIU Song-yu. Comparision of calculating methods for stress of soil arching effect of piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 1155-1158. |
[7] | RUI Rui, HUANG Cheng, XIA Yuan-you, HU Gang, XIA Xiao-long. Model tests on soil arching effects of piled embankments with sand fills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2082-2089. |
[8] | ZHANG Hao, SHI Ming-lei, LIU Wei-zheng, ZHAO Yu. Load effect of sparse capped-piles and soils in treating foundations under embankments[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1758-1765. |
[9] | YU Jin, ZHOU Yi-Tao, BAO Sheng, CAI Yan-yan. Pile-soil stress ratio of deformable pile-supported and geosynthetics-reinforced embankments[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 705. |
[10] | CAO Weiping, CHEN Renpeng, CHEN Yunmin. Experimental investigation on soil arching in piled reinforced embankments[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 436-441. |