• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MA Ya-lina, CUI Zhen, SHENG Qian, ZHOU Guang-xin, WANG Tian-qiang. Influences of normal fault dislocation on response of surrounding rock and lining system based on discrete-continuous coupling simulation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2088-2097. DOI: 10.11779/CJGE202011014
Citation: MA Ya-lina, CUI Zhen, SHENG Qian, ZHOU Guang-xin, WANG Tian-qiang. Influences of normal fault dislocation on response of surrounding rock and lining system based on discrete-continuous coupling simulation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2088-2097. DOI: 10.11779/CJGE202011014

Influences of normal fault dislocation on response of surrounding rock and lining system based on discrete-continuous coupling simulation

More Information
  • Received Date: February 26, 2020
  • Available Online: December 05, 2022
  • The seismic damage records show that the destruction of tunnel structure mostly occurs in the fault zone with surrounding rock mass of poor quality and great changes in stratigraphic conditions. In order to study the influences of fault dislocation on the response characteristics of surrounding rock and tunnel, an analytical method based on 3D discrete-continuous coupling theory is proposed, and the existing indoor model tests are introduced into the comparative tests to verify the validity of the coupling method. Based on the coupling model, the process of micro cracks gathering to form fracture and the evolution of shear zone are explored. The deformation mechanism and mechanical response characteristics of a cross-fault tunnel are studied. Besides, the influences of thickness of linings, elastic modulus of concrete and burial depth of the tunnel on its mechanical response and deformation characteristics are analyzed. The results show that the tensile cracks accumulate at the bottom of the tunnel in the hanging wall to form an inverted triangle shear zone, and shear cracks are distributed in strip on the fault plane. Meanwhile, a sharp deformation of linings emerges near the fault plane. In the hanging wall, the top arch is under pressure and the floor is under tension, while, in the footwall, the top arch is under tension and the floor is under pressure. In addition, increasing the thickness and concrete elastic modulus of the linings within a reasonable range is conducive to improving the anti-fault capability of the tunnel. And deep buried tunnel is protected by surrounding rock under fault dislocation to reduce the damage. The research results can provide a certain reference for the stability evaluation of surrounding rock mass and the anti-fault design of tunnels.
  • [1]
    徐前卫, 程盼盼, 朱合华, 等. 跨断层隧道围岩渐进性破坏模型试验及数值模拟[J]. 岩石力学与工程学报, 2016, 35(3): 5-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603001.htm

    XU Qian-wei, CHENG Pan-pan, ZHU He-hua, et al. Experimental study and numerical simulation on progressive failure characteristics of the fault-crossing tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Enginnering. 2016, 35(3): 5-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603001.htm
    [2]
    岩土工程勘察规范:GB50021—2001[S]. 2001.

    Code for Investigation of Geotechnical Engineering: GB50021—2001[S]. 2001. (in Chinese)
    [3]
    KENNER S J, SEGALL P. Postseismic deformation following the 1906 San Francisco earthquake[J]. J Geophys Res Solid Earth, 2000, 105: 13195-13209. doi: 10.1029/2000JB900076
    [4]
    WANG W L, WANG T T, SU J J, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake[J]. Tunn Undergr Space Technol Inc Trenchless Technol Res, 2001, 16: 133-150. doi: 10.1016/S0886-7798(01)00047-5
    [5]
    崔光耀, 纪磊, 王道远, 等. 汶川地震断层破碎带段隧道结构震害分析及震害机理研究[J]. 土木工程学报, 2013(11): 130-135. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201311019.htm

    CUI Guang-yao, JI Lei, WANG Dao-yuan, et al. Study of model test for anti-breaking technology of reducing dislocation layer undering stick-slip fault dislocation of metro tunnel[J]. China Civil Engineering Journal, 2013(11): 130-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201311019.htm
    [6]
    AHMADI M, MOOSAVI M, JAFARI M K. Experimental investigation of reverse fault rupture propagation through wet granular soil[J]. Engineering Geology, 2018, 239: 229-240. doi: 10.1016/j.enggeo.2018.03.032
    [7]
    LIN M, CHUNG C, JENG F, et al. The deformation of overburden soil induced by thrust faulting and its impact on underground tunnels[J]. Engineering Geology, 2007, 92(3/4): 110-132.
    [8]
    CAI Q P, PENG J M, CHARLES W W N, et al. Centrifuge and numerical modelling of tunnel intersected by normal fault rupture in sand[J]. Computers and Geotechnics, 2019, 111: 137-146. doi: 10.1016/j.compgeo.2019.03.010
    [9]
    KIANI M, AKHLAGHI T, GHALANDARZADEH A. Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults[J]. Tunnelling and Underground Space Technology, 2016, 51: 108-119. doi: 10.1016/j.tust.2015.10.005
    [10]
    刘学增, 王煦霖, 林亮伦. 45°倾角正断层粘滑错动对隧道影响试验分析[J]. 同济大学学报(自然科学版), 2014, 42(1): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201401009.htm

    LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Modeling experiment on effect of normal fault with 45° dip angle stick-slip dislocation on tunnel[J]. Journal of Tongji University (Natural Science), 2014, 42(1): 44-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201401009.htm
    [11]
    刘学增, 王煦霖, 林亮伦. 60°倾角正断层黏滑错动对山岭隧道影响的试验研究[J]. 土木工程学报, 2014, 47(2): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201402016.htm

    LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Model experimental study on influence of normal fault with 60° dip angle stick-slip dislocation on mountain tunnel[J]. China Civil Engineering Journal, 2014, 47(2): 121-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201402016.htm
    [12]
    刘学增, 王煦霖, 林亮伦. 75°倾角正断层黏滑错动对公路隧道影响的模型试验研究[J]. 岩石力学与工程学报, 2013, 32(8): 1714-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308026.htm

    LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Model experiment on effect of normal fault with 75°dipangle stick-slip dislocation on highway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1714-1720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308026.htm
    [13]
    MOHAMMAD H, ABBAS S. DEM-aided study of shear band formation in dip-slip faulting through granular soils[J]. Computers and Geotechnics, 2016, 71: 221-236.
    [14]
    NAEIJ M, SOROUSH A, JANVANMARDI Y. Numerical investigation of the effects of embedment on the reverse fault-foundation interaction[J]. Computers and Geotechnics, 2019, 113: 1-12.
    [15]
    GHADIMI C A, TAHGHIGHI H. Numerical finite element analysis of underground tunnel crossing an active reverse fault: a case study on the Sabzkouh segmental tunnel[J]. Geomechanics and Geoengineering, 2019: 1-12.
    [16]
    JEON S, KIM J, SEO Y, et al. Effect of a fault and weak plane on the stability of a tunnel in rock-a scaled model test and numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 658-663.
    [17]
    Itasca Consulting Group Inc. PFC (Particle Flow Code) User's Manual Version 5.0[M]. Minneapolis: Itasca Consulting Group Inc., 2014.
    [18]
    Itasca Consulting Group Inc. FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) User's Manual Version 6.0[M]. Minneapolis: Itasca Consulting Group Inc., 2017.
    [19]
    BERTULANI C A. Relativistic continuum-continuum coupling in the dissociation of halo nuclei[J]. Physical Review Letters, 2005, 94(7): 072701.
    [20]
    CAI M, KAISER P K, MORIOKA H, et al. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations[J]. Int J Rock Mech Min Sci, 2007, 44: 550-564.
    [21]
    SEVI A, GE L. Cyclic behaviors of railroad ballast within theparallel gradation scaling framework[J]. Journal of Materialsin Civil Engineering, 2012, 24(7): 797-804.
  • Related Articles

    [1]LÜ Xi-lin, PANG Bo, ZHU Chang-gen, ZHANG Jia-feng, XU Ke-feng, MA Quan. Physical model tests on load-sharing characteristics of piles and soils in pile- supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 50-53. DOI: 10.11779/CJGE2022S2011
    [2]CHEN Jian-feng, GU Zi-ang, WANG Xin-tao, NIU Fu-jun, YE Guan-bao, FENG Shou-zhong. Behaviour of embankment on composite foundation with geosynthetic-encased stone columns under freeze-thaw condition[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1393-1400. DOI: 10.11779/CJGE202008003
    [3]CHEN Jian-feng, LI Liang-yong, XU Chao, FENG Shou-zhong. Centrifugal model tests on composite foundation reinforced by geosynthetic- encased stone columns under embankment loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 932-938. DOI: 10.11779/CJGE201805019
    [4]ZHANG Hao, SHI Ming-lei, GUO Yuan-cheng. Analytic model for load effects in geosynthetic-reinforced and pile-supported embankment based on segmented load transfer algorithm[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1630-1639. DOI: 10.11779/CJGE201609010
    [5]YANG Tao, WANG Gang-gang, YAN Ye-qiang, LI Guo-wei. Shape of soil arching and development of its effect in a piled embankment[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 731-735. DOI: 10.11779/CJGE201404018
    [6]FAN Li-bin, ZHANG Ding-wen, LIU Song-yu. Comparision of calculating methods for stress of soil arching effect of piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 1155-1158.
    [7]RUI Rui, HUANG Cheng, XIA Yuan-you, HU Gang, XIA Xiao-long. Model tests on soil arching effects of piled embankments with sand fills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2082-2089.
    [8]ZHANG Hao, SHI Ming-lei, LIU Wei-zheng, ZHAO Yu. Load effect of sparse capped-piles and soils in treating foundations under embankments[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1758-1765.
    [9]YU Jin, ZHOU Yi-Tao, BAO Sheng, CAI Yan-yan. Pile-soil stress ratio of deformable pile-supported and geosynthetics-reinforced embankments[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 705.
    [10]CAO Weiping, CHEN Renpeng, CHEN Yunmin. Experimental investigation on soil arching in piled reinforced embankments[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 436-441.
  • Cited by

    Periodical cited type(4)

    1. 刘亚如,陈旋,王朝雅. 建筑隔震技术研究综述. 江西建材. 2024(06): 9-10 .
    2. 尹志勇,孙海峰,景立平,董瑞,徐琨鹏. 基于玻璃珠-砂垫层的岩土隔震系统隔震效果影响因素分析. 地震工程与工程振动. 2022(05): 237-248 .
    3. 庄海洋,于旭,刘英. 土-桩-隔震结构非线性动力相互作用分析方法综述. 震灾防御技术. 2022(04): 632-642 .
    4. 孙海峰,尹志勇,景立平,董瑞,徐琨鹏. 输入地震动对砂垫层岩土隔震系统隔震效果的影响. 地震工程与工程振动. 2021(06): 222-230 .

    Other cited types(1)

Catalog

    Article views (356) PDF downloads (199) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return