• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Hao, TANG Chao-sheng, LIU Bo, LÜ Chao, CHENG Qing, SHI Bin. Mechanical behavior of MICP-cemented calcareous sand in simulated seawater environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1931-1939. DOI: 10.11779/CJGE202010019
Citation: LI Hao, TANG Chao-sheng, LIU Bo, LÜ Chao, CHENG Qing, SHI Bin. Mechanical behavior of MICP-cemented calcareous sand in simulated seawater environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1931-1939. DOI: 10.11779/CJGE202010019

Mechanical behavior of MICP-cemented calcareous sand in simulated seawater environment

More Information
  • Received Date: October 07, 2019
  • Available Online: December 07, 2022
  • The calcareous sand is widely distributed in offshore continental shelves, coastal zones and oceanic reefs. It has the characteristics of low strength and fragility and has been eroded by wind and waves for long time. In order to improve the mechanical properties of the calcareous sand, a microbial-induced calcium carbonate precipitation (MICP) method is proposed, a series of cementing processes are reproduced in simulated seawater environment, and the unconfined compressive strength of the specimens is tested. At the same time, the results are compared with those obtained in fresh water environment. In addition, the effect and mechanism of urea concentration on the mechanical properties of MICP-treated calcareous sand are investigated by setting cementing solutions with different urea concentrations (0.25, 0.5, 1.0 and 1.5 mol/L). The results show that: (1) The MICP technology can be applied to marine environment, the reinforcement effect of the calcareous sand is better than that of fresh water environment, and the unconfined compressive strength of specimens after solidification in seawater is doubled compared with that in fresh water environment. (2) The alkaline environment of seawater has a positive effect on the activity of urea bacteria and the cementing effect of MICP. (3) The urea concentration has an important impact on the cementing effect of MICP, and the unconfined compressive strength of the specimen first increases and then decreases with the increase of urea concentration. It is found that the optimal urea concentration is 1.0 mol/L. (4) The unconfined compressive strength of MICP-treated specimens is positively correlated with the content of microbial-induced calcium carbonate.
  • [1]
    ALBA J L, AUDIBERT J M. Pile design in calcareous and carbonaceous granular materials, an historic overview[C]//The Second International Conference on Engineering for Calcareous Sediments, 1999, Manama: 29-44.
    [2]
    陈海洋, 汪稔, 李建国, 等. 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26(9): 1389-1392. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200509007.htm

    CHEN Hai-yang, WANG Ren, LI Jian-guo, et al. Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26(9): 1389-1392. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200509007.htm
    [3]
    蒋明镜, 吴迪, 曹培, 等. 基于SEM图片的钙质砂连通孔隙分析[J]. 岩土工程学报, 2017, 39(增刊1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S1002.htm

    JIANG Ming-jing, WU Di, CAO Pei, et al. Connected inner pore analysis of calcareous sands using SEM[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S1002.htm
    [4]
    刘崇权, 汪稔. 钙质砂物理力学性质初探[J]. 岩土力学, 1998, 19(1): 32-37, 44. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199801005.htm

    LIU Chong-quan, WANG Ren. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 1998, 19(1): 32-37, 44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199801005.htm
    [5]
    李彦彬, 李飒, 刘小龙, 等. 颗粒破碎对钙质砂压缩特性影响的试验研究[J]. 工程地质学报, 2020, 28(2): 352-359. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002016.htm

    LI Yan-bin, LI Sa, LIU Xiao-long, et al. Study on effect of particle breakage on compression properties of calcareous sands with oedometertests[J]. Journal of Engineering Geology, 2020, 28(2): 352-359. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002016.htm
    [6]
    孙吉主, 黄明利, 汪稔. 内孔隙与各向异性对钙质砂液化特性的影响[J]. 岩土力学, 2002, 23(2): 166-169. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200202007.htm

    SUN Ji-zhu, HUANG Ming-li, WANG Ren. Influence of inner pore and anisotropy on liquefaction characteristics of calcareous sand[J]. Rock and Soil Mechanics, 2002, 23(2): 166-169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200202007.htm
    [7]
    孙吉主, 汪稔. 钙质砂的颗粒破碎和剪胀特性的围压效应[J]. 岩石力学与工程学报, 2004, 23(4): 641-644. doi: 10.3321/j.issn:1000-6915.2004.04.021

    SUN Ji-zhu, WANG Ren. Influence of confining pressure on particle breakage and shear expansion of calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 641-644. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.04.021
    [8]
    张丙树, 顾凯, 李金文, 等. 钙质砂破碎过程及其微观机制试验研究[J]. 工程地质学报, 2019, 28(4): 725-733. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004006.htm

    ZHANG Bing-shu, GU Kai, LI Jin-wen, et al. Study on crushing process of calcareous sand and its microscopic mechanism[J]. Journal of Engineering Geology, 2019, 28(4): 725-733. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004006.htm
    [9]
    OHNO S, OCHIA H, YASUFUKU N. Estimation of pile settlement in calcareous sans[C]//The Second International Conference on Engineering for Calcareous Sediments, 1999, Manama: 1-6.
    [10]
    虞海珍, 汪稔. 钙质砂动强度试验研究[J]. 岩土力学, 1999, 20(4): 6-11. doi: 10.3969/j.issn.1000-7598.1999.04.002

    YU Hai-zhen, WANG Ren. The cyclic strength test research on calcareous sand[J]. Rock and Soil Mechanics, 1999, 20(4): 6-11. (in Chinese) doi: 10.3969/j.issn.1000-7598.1999.04.002
    [11]
    朱长歧, 周斌, 刘海峰. 天然胶结钙质土强度及微观结构研究[J]. 岩土力学, 2014, 35(6): 1655-1663. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406022.htm

    ZHU Chang-qi, ZHOU Bin, LIU Hai-feng. Investigation on strength and microstracture of naturally cemented calcareous soil[J]. Rock and Soil Mechanics, 2014, 35(6): 1655-1663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406022.htm
    [12]
    张家铭. 钙质砂基本力学性质及颗粒破碎影响研究[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2004.

    ZHANG Jia-ming. Study on the Fundamental Mechanical Characteristics of Calcareous Sand and the Influence of Particle Breakage[D]. Wuhan: Institute of Rock & Soil Mechanics, Chinese Academy of Sciences, 2004. (in Chinese)
    [13]
    吴京平, 褚瑶. 颗粒破碎对钙质砂变形及强度特性的影响[J]. 岩土工程学报, 1997, 19(5): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC705.007.htm

    WU Jing-ping, CHU Yao. Influence of particle breakage on deformation and strength properties of calcareous sands[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(5): 51-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC705.007.htm
    [14]
    王新志. 南沙群岛珊瑚礁工程地质特性及大型工程建设可行性研究[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2008.

    WANG Xin-zhi. Study on Engineering Geological Properties of Coral Reefs and Feasibility of Large Project Construction on Nanshaislands[D]. Wuhan: Institute of Rock & Soil Mechanics, Chinese Academy of Sciences, 2008. (in Chinese)
    [15]
    孙宗勋. 南沙群岛珊瑚砂工程性质研究[J]. 热带海洋学报, 2000, 19(2): 1-8. doi: 10.3969/j.issn.1009-5470.2000.02.001

    SUN Zong-xun. Engineering properties of coral sands in Nanshaislands[J]. Journal of Tropical Oceanography, 2000, 19(2): 1-8. (in Chinese) doi: 10.3969/j.issn.1009-5470.2000.02.001
    [16]
    WANG X Z, JIAO Y Y, WANG R, et al. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea[J]. Engineering Geology, 2011, 120(1/2/3/4): 40-47.
    [17]
    MURFF J D. Pile Capacity in calcareous sands: state if the art[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1987, 113(5): 490-507.
    [18]
    MCCLELLAND B. Calcareous sediments: an engineering enigma[C]//Proc Int Cong On Calcareous Sediments, 1988, Perth: 777-784.
    [19]
    樊恒辉, 高建恩, 吴普特. 土壤固化剂研究现状与展望[J]. 西北农林科技大学学报(自然科学版), 2006, 34(2): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200602029.htm

    FAN Heng-hui, GAO Jian-en, WU Pu-te. Prospect of researches on soil stabilizer[J]. Journal of Northwest A & F University (Natural Science Edition), 2006, 34(2): 141-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200602029.htm
    [20]
    宋云, 李培中, 郝润琴. 中国土壤固化/稳定化技术应用现状及建议[J]. 环境保护, 2015, 43(15): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU201515013.htm

    SONG Yun, LI Pei-zhong, HAO Run-qin. Analysis on the application status and advice of solidification/stabilization in China[J]. Environmental Protection,,2015, 43(15): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU201515013.htm
    [21]
    王灵秀, 王雅明, 郝庆军, 等. 水泥行业熟料生产CO2排放调查研究[J]. 中国建材科技, 2010(增刊2): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKJ2010S2022.htm

    WANG Ling-xiu, WANG Ya-ming, HAO Qing-jun, et al. Survey and research on CO2 emissions in clinker production of cement industry[J]. China Building Materials Science & Technology, 2010(S2): 96-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKJ2010S2022.htm
    [22]
    钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506003.htm

    QIAN Chun-xiang, WANG An-hui, WANG Xin. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6): 1537-1548. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506003.htm
    [23]
    荣辉, 钱春香. 微生物水泥基材料特征[J]. 科学通报, 2012, 57(9): 770-775. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201209013.htm

    RONG Hui, QIAN Chun-xiang. Characterization of microbe cementitious materials[J]. Chinese Science Bulletin, 2012, 57(9): 770-775. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201209013.htm
    [24]
    刘璐, 沈扬, 刘汉龙, 等. 微生物胶结在防治堤坝破坏中的应用研究[J]. 岩土力学, 2016, 37(12): 3410-3416. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612009.htm

    LIU Lu, SHEN Yang, LIU Han-long, et al. Application of bio-cement in erosion control of levees[J]. Rock and Soil Mechanics, 2016, 37(12): 3410-3416. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612009.htm
    [25]
    崔明娟, 郑俊杰, 赖汉江. 颗粒粒径对微生物固化砂土强度影响的试验研究[J]. 岩土力学, 2016, 37(增刊2): 397-402. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2051.htm

    CUI Ming-juan, ZHENG Jun-jie, LAI Han-jiang. Experimental study of effect of particle size on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2016, 37(S2): 397-402. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2051.htm
    [26]
    邵光辉, 冯建挺, 赵志峰, 等. 微生物砂浆防护粉土坡面的强度与抗侵蚀性影响因素分析[J]. 农业工程学报, 2017, 33(11): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201711017.htm

    SHAO Guang-hui, FENG Jian-ting, ZHAO Zhi-feng, et al. Influence factor analysis related to strength and anti-erosion stability of silt slope with microbial mortar protective covering[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 141-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201711017.htm
    [27]
    DEJONG J T, SOGA K, KAVAZANJIAN E, et al. Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges[J]. Géotechnique, 2013, 63(4): 287-301.
    [28]
    MARTINEZ B C, DEJONG J T, GINN J, et al. Experimental optimization of microbial-induced carbonate precipitation for soil improvement[J]. Journal of Geotechnical & Geo- environmental Engineering, 2013, 139(4): 587-598.
    [29]
    QABANY A A, SOGA K, SANTAMARINA C. Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical &Geoenvironmental Engineering, 2012, 138(8): 992-1001.
    [30]
    何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm

    HE Jia, CHU Jian, LIU Han-long, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm
    [31]
    李明东, LIN Li, 张振东, 等. 微生物矿化碳酸钙改良土体的进展、展望与工程应用技术设计[J]. 土木工程学报, 2016, 49(10): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201610013.htm

    LI Ming-dong, LIN Li, ZHANG Zhen-dong, et al. Review, outlook and application technology design on soil improvement by microbial induced calcium carbonate precipitation[J]. China Civil Engineering Journal, 2016, 49(10): 80-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201610013.htm
    [32]
    FERRIS F G, HALLBECK L, KENNEDY C B, et al. Geochemistry of acidic Rio Tinto headwaters and role of bacteria in solid phase metal partitioning[J]. Chemical Geology, 2004, 212(3/4): 291-300.
    [33]
    DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210.
    [34]
    DEJONG J T, FRITZGES M B, NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381-1392.
    [35]
    PAASSEN V L A. Bio-mediated ground improvement: from laboratory experiment to pilot applications[C]//Geo-Frontiers Congress 2011, 2011, Dallas: 4099-4108.
    [36]
    CHU J, STABNIKOV V, IVANOV V. Microbially induced calcium carbonate precipitation on surface or in the bulk of soil[J]. Geomicrobiology Journal, 2012, 29(6): 544-549.
    [37]
    GOMEZ M G, MARTINEZ B C, DEJONG J T, et al. Field-scale bio-cementation tests to improve sands[J]. Proceedings of the Institution of Civil Engineers Ground Improvement, 2014, 168(3): 1-11.
    [38]
    JIANG N J, SOGA K. The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures[J]. Géotechnique, 2016, 67(1): 42-55.
    [39]
    JIANG N J, SOGA K, KUO M. Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 143(3): 04016100.
    [40]
    LIU L, LIU H, XIAO Y, et al. Biocementation of calcareous sand using soluble calcium derived from calcareous sand[J]. Bulletin of Engineering Geology and the Environment, 2018, 77: 1781-1791.
    [41]
    方祥位, 申春妮, 楚剑, 等. 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36(10): 2773-2779. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510005.htm

    FANG Xiang-wei, SHEN Chun-ni, CHU Jian, et al. An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36(10): 2773-2779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510005.htm
    [42]
    李捷, 方祥位, 申春妮, 等. 含水率对珊瑚砂微生物固化体力学特性影响研究[J]. 工业建筑, 2016, 46(12): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201612019.htm

    LI Jie, FANG Xiang-wei, SHEN Chun-ni, et al. Influence of moisture content on mechanical properties of biocemented coral sand columns[J]. Industrial Construction, 2016, 46(12): 93-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201612019.htm
    [43]
    方祥位, 李晶鑫, 李捷, 等. 珊瑚砂微生物固化体单轴损伤本构模型[J]. 地下空间与工程学报, 2018, 14(5): 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805012.htm

    FANG Xiang-wei, LI Jing-xin, LI Jie, et al. Damage constitutive model of biocemented coral sand columnsunder unconfined compression[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 93-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805012.htm
    [44]
    方祥位, 李晶鑫, 李捷, 等. 珊瑚砂微生物固化体三轴压缩试验及损伤本构模型研究[J]. 岩土力学, 2018, 39(增刊1): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1002.htm

    FANG Xiang-wei, LI Jing-xin, LI Jie, et al. Study of triaxial compression test and damage constitutive model of biocemented coral sand columns[J]. Rock and Soil Mechanics, 2018, 39(S1): 10-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1002.htm
    [45]
    刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm

    LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
    [46]
    马瑞男, 郭红仙, 程晓辉, 等. 微生物拌和加固钙质砂渗透特性试验研究[J]. 岩土力学, 2018, 39(增刊2): 217-223. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2031.htm

    MA Rui-nan, GUO Hong-xian, CHENG Xiao-hui, et al. Permeability experiment study of calcareous sand treated by microbially induced carbonate precipitation using mixing methods[J]. Rock and Soil Mechanics, 2018, 39(S2): 217-223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2031.htm
    [47]
    CHENG L, SHAHIN M, CORDRUWISCH R, et al. Soil stabilisation by microbial-induced calcite precipitation (MICP): investigation into some physical and environmental aspects[C]//7th International Congress on Environmental Geotechnics, 2014, Melbourne.
    [48]
    欧益希, 方祥位, 张楠, 等. 溶液盐度对微生物固化珊瑚砂的影响[J]. 后勤工程学院学报, 2016, 32(1): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HQGC201601015.htm

    OU Yi-xi, FANG Xiang-wei, ZHANG Nan, et al. Influence of solution salinity on microbial biocementation of coral sand[J]. Journal of Logistical Engineering University, 2016, 32(1): 78-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HQGC201601015.htm
    [49]
    彭劼, 田艳梅, 杨建贵. 海水环境下MICP加固珊瑚砂试验[J]. 水利水电科技进展, 2019, 39(1): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201901011.htm

    PENG Jie, TIAN Yan-mei, YANG Jian-gui. Experiments of coral sand reinforcement using MICP in seawater environment[J]. Advances in Science and Technology of Water Resources, 2019, 39(1): 62-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201901011.htm
    [50]
    吴洋, 练继建, 闫玥, 等. 巴氏芽孢八叠球菌及相关微生物的生物矿化的分子机理与应用[J]. 中国生物工程杂志, 2017, 37(8): 96-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SWGJ201708014.htm

    WU Yang, LIAN Ji-jian, YAN Yue, et al. Mechanism and applications of bio-mineralization induced by sporosarcinapasteurii and related mic- roorganisms[J]. China Biotechnology, 2017, 37(8): 96-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWGJ201708014.htm
    [51]
    谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675-682. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904014.htm

    XIE Yue-han, TANG Chao-sheng, YIN Li-yang, et al. Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904014.htm
    [52]
    尹黎阳. 基于微生物诱导碳酸钙沉淀技术(MICP)固化钙质砂的力学性能研究[D]. 南京: 南京大学, 2019.

    YIN Li-yang. Experimental Study on the Mechanical Behavior of Fiber Reinforcement Calcareous Sand Cemented by MICP Technology[D]. Nanjing: Nanjing University, 2019. (in Chinese)
    [53]
    CHOI S G, PARK S S, WU S, et al. Methods for calcium carbonate content measurement of biocemented soils[J]. Journal of Materials in Civil Engineering, 2017, 29(11): 06017015.
    [54]
    赵茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D]. 北京: 中国地质大学, 2014.

    ZHAO Qian. Experimental Study on Soil Improvement Using Microbial Induced Calcite Precipitation (MICP)[D]. Beijing: China University of Geosciences, 2014. (in Chinese)
    [55]
    欧益希, 方祥位, 申春妮, 等. 颗粒粒径对微生物固化珊瑚砂的影响[J]. 水利与建筑工程学报, 2016, 14(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201602007.htm

    OU Yi-xi, FANG Xiang-wei, SHEN Chun-ni, et al. Influence of particle sizes of coral sand on bio-cementation[J]. Journal of Water Resources and Architectural Engineering, 2016, 14(2): 35-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201602007.htm
    [56]
    BARIYANGA J. Concentration Gradient[M]//BINDER M D, HIROKAWA N, WINDHORST U, ed. Encyclopedia of Neuroscience, Berlin: Springer, 2009.
    [57]
    CHENG L, SHAHIN M A, CORD-RUWISCH R. Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments[J]. Géotechnique, 2014, 64(12): 1010-1013.
    [58]
    尹黎阳, 唐朝生, 谢约翰, 等. 微生物矿化作用改善岩土材料性能的影响因素[J]. 岩土力学, 2019, 40(7): 2525-2546. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907007.htm

    YIN Li-yang, TANG Chao-sheng, XIE Yue-han, et al. Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation[J]. Rock and Soil Mechanics, 2019, 40(7): 2525-2546. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907007.htm
    [59]
    STOCKS-FISCHER S, GALINAT J K, BANG S. Microbiological precipitation of CaCO3[J]. Soil Biology & Biochemistry, 1999, 31(11): 1563-1571.
    [60]
    黄琰, 罗学刚, 杜菲. 微生物诱导方解石沉积加固的影响因素[J]. 西南科技大学学报, 2009, 24(3): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-XNGX200903017.htm

    HUANG Yan, LUO Xue-gang, DU Fei. Studies on the effect factor of microbiologically induced calcite precipitation[J]. Journal of Southwest University of Science and Technology, 2009, 24(3): 87-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNGX200903017.htm
    [61]
    FERRIS F G, FYFE W S, BEVERIDGE T J. Bacteria as nucleation sites for authigenic minerals in a metal- contaminated lake sediment[J]. Chemical Geology, 1987, 63(3): 225-232.
    [62]
    FENG K, MONTOYA B M. Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(1): 04015057.
    [63]
    CHOI S G, JIAN C, BROWN R C, et al. Sustainable biocement production via microbially-induced calcium carbonate precipitation: use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass[J]. Acs Sustainable Chemistry, 2017, 5(6): 5183-5190.
  • Cited by

    Periodical cited type(5)

    1. 赵嘉成,罗宇轩,张道博,包查润,冯鹏. 基于原位资源利用的火星基地建造方案. 工业建筑. 2024(01): 102-114 .
    2. 丁烈云,周诚,高玉月,韩文彬. 地外建造研究进展与科学技术挑战. 土木工程学报. 2024(06): 26-42 .
    3. 蒋明镜,石安宁,奚邦禄,黄伟,吕雷. 火星探测器着陆试验场地研造. 岩土工程学报. 2023(04): 826-832 . 本站查看
    4. 吴琼,李顺群,黄雄飞,李丽君,陈之祥. 土体温度场物理模拟用土的制备方法研究. 地下空间与工程学报. 2022(05): 1573-1579 .
    5. 卢谅,何兵,肖亮,王宗建,马书文,林浩鑫. 基于透明土的成层土中CPT贯入试验研究. 岩土工程学报. 2022(12): 2215-2224 . 本站查看

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return