• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
BAN Yu-xin, FU Xiang, XIE Qiang, ZHOU Xiao-ping. Evaluation of fracture morphology of shale in Brazilian tests and analysis of power spectral characteristics[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2307-2315. DOI: 10.11779/CJGE201912016
Citation: BAN Yu-xin, FU Xiang, XIE Qiang, ZHOU Xiao-ping. Evaluation of fracture morphology of shale in Brazilian tests and analysis of power spectral characteristics[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2307-2315. DOI: 10.11779/CJGE201912016

Evaluation of fracture morphology of shale in Brazilian tests and analysis of power spectral characteristics

More Information
  • Received Date: January 29, 2019
  • Published Date: December 24, 2019
  • The quantitative evaluation of the fracture morphology of shale is an important prerequisite for assessing the complexity of hydraulic fracturing fracture networks. The Brazilian tests coupled with digital image correlation and acoustic emission technique are conducted on black shale, the corresponding relationships between the characteristics of the frequency band of acoustic emission power spectra and the micro-damage mechanism of rock specimens are established, and the fracture morphology is quantitatively evaluated. The results show that the bedding layer leads to the differences of power spectral characteristics, micro-damage mechanism and fracture morphology of shale. The tension and shear failures of shale matrix induce high-frequency acoustic emission signals, and the tension and shear failures of shale bedding induce low-frequency acoustic emission signals. With the increase of the angle between the bedding layer and the loading direction, the dominant frequencies and the secondary dominant frequencies gradually diffuse from the low-frequency band to the high-frequency one, and the quantitative ratio of high frequency to low frequency H:L gradually increases. The H:L of 0° shale specimen is 4.28%∶95.72%, and the fracture is a straight line in shape; the H:L of 30° and 60° shale specimens are 15.89%∶84.11% and 36.93%∶63.07%, respectively, and their fractures are arched in shape; the H:L of 90° specimen is 93.85%∶6.15%, and the fracture is a composited arc-straight line in shape. The results can provide references for analyzing in situ micro-seismic data and a theoretical basis for controlling fracture trajectory in hydraulic fracturing in shale reservoirs.
  • [1]
    高峰, 谢和平, 鞠杨, 等. 页岩储层压裂改造的非常规理论与技术构想[J]. 四川大学学报(工程科学版), 2012, 44(6): 1125-1130.
    (GAO Feng, XIE He-ping, JU Yang, et al.Unconventional theories and strategies for fracturing treatments of shale gas strata[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(6): 1125-1130. (in Chinese))
    [2]
    王海柱, 沈忠厚, 李根生. 超临界CO2开发页岩气技术[J]. 石油钻探技术. 2011, 39(3): 30-35.
    (WANG Hai-zhu, SHEN Zhong-hou, LI Gen-sheng.Feasibility analysis on shale gas exploitation with supercritical CO2[J]. Petroleum Drilling Techniques, 2011, 39(3): 30-35. (in Chinese))
    [3]
    郑哲敏. 关于中国页岩气持续开发工程科学研究的一点认识[J]. 科学通报, 2016, 61(1): 34-35.
    (ZHENG Zhe-min.Knowledge on the engineering science of China's shale gas sustainable development[J]. Science China, 2016, 61(1): 34-35. (in Chinese))
    [4]
    贾长贵, 李双明, 王海涛, 等. 页岩储层网络压裂技术研究与试验[J]. 中国工程科学, 2012, 14(6): 106-112.
    (JIA Chang-gui, LI Shuang-ming, WANG Hai-tao, et al.Shale reservoir network fracturing technology research and experiment[J]. Engineering Sciences, 2012, 14(6): 106-112. (in Chinese))
    [5]
    陈天宇, 冯夏庭, 张希巍, 等. 黑色页岩力学特性及各向异性特性试验研究[J]. 岩石力学与工程学报, 2014, 33(9): 1772-1779.
    (CHEN Tian-yu, FENG Xia-ting, ZHANG Xi-wei, et al.Experimental study on mechanical and anisotropic properties of black shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1772-1779. (in Chinese))
    [6]
    WANG Y, WANG L, WANG J, et al.Investigating microstructure of Longmaxi shale in Shizhu area, Sichuan Basin, by optical microscopy, scanning electron microscopy and micro-computed tomography[J]. Nuclear Science and Techniques. 2017, 28(11): 1-10.
    [7]
    MEIER T, RYBACKI E, BACKERS T, et al.Influence of bedding angle on borehole stability: a laboratory investigation of transverse isotropic oil shale[J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1535-1546.
    [8]
    侯鹏, 高峰, 杨玉贵, 等. 黑色页岩巴西劈裂破坏的层理效应研究及能量分析[J]. 岩土工程学报, 2016, 38(5): 930-937.
    (HOU Peng, GAO Feng, YANG Yu-gui, et al.Effect of bedding orientation on failure of black shale under Brazilian tests and energy analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 930-937. (in Chinese))
    [9]
    衡帅, 杨春和, 曾义金, 等. 页岩水力压裂裂缝形态的试验研究[J]. 岩土工程学报, 2014, 34(7): 1243-1251.
    (HENG Shuai, YANG Chun-he, ZENG Yi-jin, et al.Experimental study on hydraulic fracture geometry of shale[J]. Chinese Journal of Geotechnical Engineering, 2014, 34(7): 1243-1251. (in Chinese))
    [10]
    考佳玮, 金衍, 付卫能, 等. 深层页岩在高水平应力差作用下压裂裂缝形态实验研究[J]. 岩石力学与工程学报, 2018, 37(6): 1332-1339.
    (KAO Jia-wei, JIN Yan, FU Wei-neng, et al.Experimental research on the morphology of hydraulic fractures in deep shale under high difference of in-situ horizontal stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1332-1339. (in Chinese))
    [11]
    WENG X.Modeling of complex hydraulic fractures in naturally fractured formation[J]. Journal of Unconventional Oil and Gas Resources, 2015, 9: 114-135.
    [12]
    谭鹏, 金衍, 韩玲, 等. 酸液预处理对深部裂缝性页岩储层压裂的影响机制[J]. 岩土工程学报, 2018, 40(2): 384-390.
    (TAN Peng, JIN Yan, HAN Ling, et al.Influencing mechanism of acidification pretreatment on hydraulic fracture for deep fractured shale reservoirs[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 384-390. (in Chinese))
    [13]
    LYU Q, LONG X, RANJITH P G, et al.Experimental investigation on the mechanical behaviours of a low-clay shale under water-based fluids[J]. Engineering Geology, 2018, 233: 124-138.
    [14]
    范濛, 金衍, 付卫能, 等. 水力裂缝扩展行为的声发射特征实验研究[J]. 岩石力学与工程学报, 2018, 37(增刊2): 3834-3841.
    (FAN Meng, JIN Yan, FU Wei-neng, et al.Experimental study on fracture propagation behavior based on acoustic emission characteristics[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 3834-3841. (in Chinese))
    [15]
    曾鹏, 刘阳军, 纪洪广, 等. 单轴压缩下粗砂岩临界破坏的多频段声发射耦合判据和前兆识别特征[J]. 岩土工程学报, 2017, 39(3): 509-517.
    (ZENG Peng, LIU Yang-jun, JI Hong-guang, et al.Coupling criteria and precursor identification characteristics of multi-band acoustic emission of gritstone fracture under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 509-517. (in Chinese))
    [16]
    朱振飞, 陈国庆, 肖宏跃, 等. 基于声发射多参量分析的岩桥裂纹扩展研究[J]. 岩石力学与工程学报, 2018, 37(4): 909-918.
    (ZHU Zhen-fei, CHEN Guo-qing, XIAO Hong-yue, et al.Study on crack propagation of rock bridge based on multi parameters analysis of acoustic emission[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 909-918. (in Chinese))
    [17]
    LI L R, DENG J H, ZHENG L, et al.Dominant frequency characteristics of acoustic emissions in white marble during direct tensile tests[J]. Rock Mechanics and Rock Engineering, 2017, 50(5): 1337-1346.
    [18]
    ZHANG Z, DENG J, ZHU J, et al.An experimental investigation of the failure mechanisms of jointed and intact marble under compression based on quantitative analysis of acoustic emission waveforms[J]. Rock Mechanics and Rock Engineering, 2018, 51(7): 2299-2307.
    [19]
    傅翔. 岩石应力记忆特性的声发射试验及理论研究[D]. 重庆: 重庆大学, 2016.
    (FU Xiang.Acoustic emission test and theoretical research on the stress memory characteristics of rock[D]. Chongqing: Chongqing University, 2016. (in Chinese))
    [20]
    MAO W, TOWHATA I.Monitoring of single-particle fragmentation process under static loading using acoustic emission[J]. Applied Acoustics, 2015, 94: 39-45.
    [21]
    STANCHITS S, BURGHARDT J, SURDI A.Hydraulic fracturing of heterogeneous rock monitored by acoustic emission[J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2513-2527.
    [22]
    ISRM. Suggested methods for determining tensile strength of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences, 1978, 15: 99-103.
    [23]
    CHU T C, RANSON W F, SUTTON M A.Applications of digital-image-correlation techniques to experimental mechanics[J]. Experimental Mechanics, 1985, 25(3): 232-244.
    [24]
    侯鹏, 高峰, 杨玉贵, 等. 考虑层理影响页岩巴西劈裂及声发射试验研究[J]. 岩土力学, 2016, 37(6): 1603-1612.
    (HOU Peng, GAO Feng, YANG Yu-gui, et al.Effect of bedding plane direction on acoustic emission characteristics of shale in Brazilian tests[J]. Rock and Soil Mechanics, 2016, 37(6): 1603-1612. (in Chinese))
    [25]
    MOKHTARI M, TUTUNCU A N.Impact of laminations and natural fractures on rock failure in Brazilian experiments: a case study on Green River and Niobrara formations[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 79-86.
    [26]
    杜梦萍, 潘鹏志, 纪维伟, 等. 炭质页岩巴西劈裂载荷下破坏过程的时空特征研究[J]. 岩土力学, 2016, 37(12): 3437-3446.
    (DU Meng-ping, PAN Peng-zhi, JI Wei-wei, et al.Time-space laws of failure process of carbonaceous shale in Brazilian split test[J]. Rock and Soil Mechanics, 2016, 37(12): 3437-3446. (in Chinese))
    [27]
    XU G, HE C, CHEN Z, et al.Effects of the micro-structure and micro-parameters on the mechanical behaviour of transversely isotropic rock in Brazilian tests[J]. Acta Geotechnica, 2018, 13(4): 887-910.
    [28]
    张树文, 鲜学福, 周军平, 等. 基于巴西劈裂试验的页岩声发射与能量分布特征研究[J]. 煤炭学报, 2017, 42(增刊2): 346-353.
    (ZHANG Shu-wen, XIAN Xue-fu, ZHOU Jun-ping, et al.Acoustic emission characteristics and the energy distribution of the shale in Brazilian splitting testing[J]. Journal of China Coal Society, 2017, 42(S2): 346-353. (in Chinese))
    [29]
    HARRIS D, TETELMAN A, DARWISH F.Acoustic emission testing[Z]. Philadelphia: 1972238.
    [30]
    王燕升, 邓建辉. 基于HHT和AE主频统计的岩石破坏进程分析[J]. 地下空间与工程学报, 2018, 14(5): 1266-1275.
    (WANG Yan-sheng, DENG Jian-hui.Analysis on rock failure process based on HHT and AE dominant frequency statistics[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1266-1275. (in Chinese))
    [31]
    CHO J, KIM H, JEON S, et al.Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50: 158-169.
    [32]
    CHONG Z, LI X, CHEN X, et al. Numerical investigation into the effect of natural fracture density on hydraulic fracture network propagation[J]. Energies, 2017, 10(7): 914: 1-33.
  • Related Articles

    [1]HAN Zhong, ZOU Weilie, PEI Qiuyang, WANG Xiequn, ZHANG Hongri. Effects of humidity and freeze-thaw cycles on compression and pore structure characteristics of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 495-505. DOI: 10.11779/CJGE20230367
    [2]The influence of sand pore structure on air migration during air injected desaturation process[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240890
    [3]YING Sai, XIA Xiaozhou, WEN Tao, ZHOU Fengxi, CAO Yapeng, LI Guoyu, ZHANG Qing. Experimental study on freezing characteristic curve of soils based on nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1437-1444. DOI: 10.11779/CJGE20230301
    [4]QIAN Jiangu, LIN Zhiqiang. Shear strength behaviors of unsaturated expansive soils with dual-porosity structure[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 486-494. DOI: 10.11779/CJGE20220112
    [5]LI Kun-peng, CHEN Yong-gui, YE Wei-min, CUI Yu-jun. Advances in studies on pore structure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 399-408. DOI: 10.11779/CJGE202203001
    [6]ZHAO Gui-tao, HAN Zhong, ZOU Wei-lie, WANG Xie-qun. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. DOI: 10.11779/CJGE202106018
    [7]ZHANG Peng-wei, HU Li-ming, Meegoda Jay N, Celia Michael A. Two-phase flow model based on 3D pore structure of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 37-45. DOI: 10.11779/CJGE202001004
    [8]CAI Guo-qing, WANG Ya-nan, ZHOU An-nan, ZHAO Cheng-gang. A microstructure-dependent hydro-mechanical coupled constitutive model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 618-624. DOI: 10.11779/CJGE201804005
    [9]MA Tian-tian, WEI Chang-fu, ZHOU Jia-zuo, TIAN Hui-hui. Freezing characteristic curves and water retention characteristics of soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 172-177. DOI: 10.11779/CJGE2015S1033
    [10]Algorithmic study on rock pore structure based on micro-CT experiment[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1703-1708.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return