• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHENG Jin-hui, QI Chang-guang, WANG Xin-quan, SHAN Yan-ling, LAI Wen-jie, WANG Liang-zhi. Elasto-plastic analysis of cylindrical cavity expansion considering particle breakage of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2156-2164. DOI: 10.11779/CJGE201911023
Citation: ZHENG Jin-hui, QI Chang-guang, WANG Xin-quan, SHAN Yan-ling, LAI Wen-jie, WANG Liang-zhi. Elasto-plastic analysis of cylindrical cavity expansion considering particle breakage of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2156-2164. DOI: 10.11779/CJGE201911023

Elasto-plastic analysis of cylindrical cavity expansion considering particle breakage of sand

More Information
  • Received Date: December 20, 2018
  • Published Date: November 24, 2019
  • The current studies on the cavity expansion in sand have not considered the breakage and dilatancy of sand particles. In order to facilitate the subsequent calculation, many scholars have simplified the calculation parameters such as shear stress and shear modulus, so the final results do not reflect the actual situation accurately. In response to the above problems, a critical constitutive model for sand considering particle breakage and dilatancy is used. Employing the associate flow rules and the Lagrangian analysis method in the plastic zone, the cylindrical cavity expansion problem described by the traditional Euler description is converted into a first-order nonlinear ordinary differential equation with the initial values based on the Lagrangian description. Finally, the semi-analytical exact solution to the cylindrical cavity expansion problem in sand is obtained by the numerical method, and the influences of the initial stress on the cavity expansion results are analyzed through an example. The results show that the particle breakage and the initial stress have great influences on the cavity stress and the radius of the plastic zone. The combination of particle breakage and initial stress causes the soil to exhibit different dilatancy characteristics during cavity expansion. In addition, the sand under high initial stresses is difficult to reach the critical state during cavity expansion.
  • [1]
    VESIC A S.Expansion of cavity in infinite soil mass[J]. Journal of Soil Mechanics Foundation Division, American Socialy of Civil Engineering, 1972, 98(3): 265-289.
    [2]
    CAETER J P, BOOKER J R, YEUNG S K.Cavity expansion in cohesive frictional soils[J]. Géotechnique, 1986, 36(3): 349-358.
    [3]
    YU H S, HOULSBY G T.Finite cavity expansion in dilatant soils: loading analysis[J]. Géotechnique, 1991, 41(2): 173-183.
    [4]
    SHUTTLE D.Cylindrical cavity expansion and contraction in Tresca soil[J]. Géotechnique, 2007, 57(3): 305-308.
    [5]
    COLLINS I F, YU H S.Undrained cavity expansions in critical state soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20(7): 489-516.
    [6]
    CHEN S L, ABOUSLEIMAN Y N.Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified Cam clay soil[J]. Géotechnique, 2012, 62(5): 447-456.
    [7]
    VRAKAS A, ANAGNOSTOU G.A finite strain closed-form solution for the elastoplastic ground response curve in tunnelling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38: 1131-1148.
    [8]
    MO P Q, YU H S.Drained cavity expansion analysis with a unified state parameter model[J]. Canadian Geotechnical Journal, 2018, 55(7): 1029-1040.
    [9]
    COLLINS I F, PENDER M J, WANG, Y.Cavity expansion in sands under drained loading conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1992, 16(1): 3-23.
    [10]
    COLLINS I F, STIMPSON J R.Similarity solutions for drained and undrained cavity expansions in soils[J]. Géotechnique, 1994, 44(1): 21-34.
    [11]
    CAO L F, TEH C I, CHANG M F.Undrained cavity expansion in modified Cam clay I:theoretical analysis[J]. Géotechnique, 2001, 51(4): 323-334.
    [12]
    肖昭然, 张昭, 杜明芳. 饱和土体小孔扩张问题的弹塑性解析解[J]. 岩土力学, 2004, 25(9): 1373-1378.
    (XIAO Zhao-ran, ZHANG Zhao, DU Ming-fang.An elastoplastic closed-form approach of cavity expansion in saturated soil based on modified Cam clay model[J]. Rock and Soil Mechianics, 2004, 25(9): 1373-1378. (in Chinese))
    [13]
    胡伟, 刘明振. 非饱和土中球形孔扩张的弹塑性分析[J]. 岩土工程学报, 2006, 28(10): 1292-1297.
    (HU Wei, LIU Ming-zhen.Elastic-plastic solution of expansion of sphere cavity in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1292-1297. (in Chinese))
    [14]
    宋勇军, 胡伟, 王德胜, 等. 基于修正剑桥模型的挤密桩挤土效应分析[J]. 岩土力学, 2011, 32(3): 811-814.
    (SONG Yong-jun, HU Wei, WANG De-sheng, et al.Analysis of squeezing effect of compaction piles based on modified Cam-clay model[J]. Rock and Soil Mechianics, 2011, 32(3): 811-814. (in Chinese))
    [15]
    李镜培, 李林, 孙德安, 等. 饱和软土地层静压沉桩阻力理论研究[J]. 岩土工程学报, 2015, 37(8): 1454-1461.
    (LI Jing-pei, LI Lin, SUN De-an, et al.Theoretical study on sinking resistance of jacked piles in saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1454-1461. (in Chinese))
    [16]
    李镜培, 唐剑华, 李林, 等. 饱和黏土中柱孔三维弹塑性扩张机制研究[J]. 岩石力学与工程学报, 2016, 35(2): 378-386.
    (LI Jing-pei, TANG Jian-hua, LI Lin, et al.Mechanism of three dimensional elastic-plastic expansion of cylindrical cavity in saturated clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 378-386. (in Chinese))
    [17]
    李镜培, 唐剑华, 张亚国, 等. 饱和粘土中球孔扩张问题弹塑性解析[J]. 哈尔滨工业大学学报, 2014, 46(12): 71-77.
    (LI Jing-pei, TANG Jian-hua, ZHANG Ya-guo, et al.Elastic-plastic solution of sphere cavity expansion in saturated clay[J]. Journal of Harbin Institute of Technology, 2014, 46(12): 71-77. (in Chinese))
    [18]
    李林, 李镜培, 孙德安, 等. 剪胀性砂土中球孔扩张弹塑性解[J]. 岩土工程学报, 2017, 39(8): 1453-1460.
    (LI Lin, LI Jing-pei, SUN De-an, et al.Elasto-plastic solution to expansion of a spherical cavity in dilatant sand[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1453-1460. (in Chinese))
    [19]
    RUSSELL A R, KHALILI N.Drained cavity expansion in sands exhibiting particle crushing[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(4): 323-340.
    [20]
    蒋明镜, 孙渝刚. 考虑砂土颗粒破碎的圆孔扩张半解析分析[J]. 岩土工程学报, 2009, 31(11): 1645-1651.
    (JIANG Ming-jing, SUN Yu-gang.Semi-analytical solution to cavity expansion in crushable sands[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1645-1651. (in Chinese))
    [21]
    JIANG M J, SUN Y G.Cavity expansion analyses of crushable granular materials with state-dependent dilatancy[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(6): 723-742.
    [22]
    KONRAD J M.Sand state from cone penetrometer tests: a framework considering grain crushing stress[J]. Géotechnique, 1998, 48(2): 201-215.
    [23]
    蒋明镜. 用于触探试验分析的粒状材料本构模型之展望[J]. 岩土工程学报, 2007, 29(9): 1281-1288.
    (JIANG Ming-jing.Main features of future constitutive models for granular materials in penetration analysis[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1281-1288. (in Chinese))
    [24]
    YAO Y P, YAMAMOTO H, WANG N D.Constitutive model considering sand crushing[J]. Soils and Foundations, 2008, 48(4): 603-608.
    [25]
    王乃东, 姚仰平. 粒状材料颗粒破碎的力学特性描述[J]. 工业建筑, 2008, 38(8): 17-20.
    (WANG Nai-dong, YAO Yang-ping.Mechanical description for granular material exhibiting particle crushing[J]. Industrial Construction,2008, 38(8): 17-20. (in Chinese))
    [26]
    姚仰平, 侯伟, 罗汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151.
    (YAO Yang-ping, HOU Wei, LUO Ting.Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese))
    [27]
    WANG N D, YAO Y P.A generalized constitutive model considering sand crushing[J]. Soils and Foundations, 2015, 48(2): 12-15.
    [28]
    刘萌成, 高玉峰, 黄晓明. 考虑强度非线性的堆石料弹塑性本构模型研究[J]. 岩土工程学报, 2005, 27(3): 294-298.
    (LIU Meng-cheng, GAO Yu-feng, HUANG Xiso-ming.Study on elasto-plastic constitutive model of rockfills with nonlinear strength characteristics[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 294-298. (in Chinese))
  • Related Articles

    [1]A decoupled ALE method of implicit stabilized node-based smoothed finite element and its applications to large deformation analysis[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240702
    [2]Effect of initial static shear stress and cyclic loading direction on the liquefaction behavior of saturated dense sand[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240591
    [3]ZHANG Hong. An optimized augmented Lagrangian method and its implementation in discontinuous deformation analysis (DDA)[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 361-367. DOI: 10.11779/CJGE201902015
    [4]ZHOU Lun-lun, CHU Xi-hua, XU Yuan-jie. Breakage behavior of sand under true triaxial stress based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 839-847. DOI: 10.11779/CJGE201705008
    [5]ZHOU Zheng-long, CHEN Guo-xing, WU Qi. Effect of initial static shear stress on liquefaction behavior of saturated silt[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 504-509. DOI: 10.11779/CJGE201603014
    [6]NIE Qing, WEI Wei, LUO Kai-tai, LIU En-long. Confined compression features and mathematical modeling of artificially structured soils with initial stress-induced anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 774-778.
    [7]3D initial ground stress measurement at deep position of Juji Mine[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [8]Lien Kwei Chien, Shan Jin Chang, Yan Nam Oh. Initial shear stress effects on dynamic properties of reclaimed soil in offshore area[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 420-426.
    [9]Li Qingqi. Regression analysis and 3 D fitting of initial stress[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5): 71-74.
    [10]Pang Zuohui, Chen Wensheng, Deng Jianhui, Ge Xiurun. Back analysis for complex initial geostress field[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 47-50.
  • Cited by

    Periodical cited type(11)

    1. 王亚东. 钻孔灌注桩孔壁稳定性影响因素的研究进展. 黑龙江科学. 2024(08): 136-139+142 .
    2. 万征,刘媛媛. 考虑剪胀效应的各向异性本构模型及其在圆柱扩孔中的应用. 力学学报. 2024(10): 2936-2954 .
    3. 陈成,吴勋,孙中华,张先伟,王勇,张军杰,余颂. 基于弹黏塑性模型的部分排水柱孔扩张分析. 岩土力学. 2024(11): 3259-3270 .
    4. 耿斌斌,李娟,乔建刚,李景文. 基于三水准设防的抗浮锚杆系统设计方法. 科学技术与工程. 2024(29): 12809-12816 .
    5. 王长虹,吴昭欣,王昆,汤道飞,马铖涛. CPTU数据校准上海深层软土参数的随机力学-贝叶斯方法. 岩土工程学报. 2023(01): 75-84 . 本站查看
    6. 赵云,杨忠方,凌道盛,陈鹏,肖昭然. 垃圾土中排水柱孔扩张问题弹塑性解. 岩土力学. 2022(07): 1825-1832 .
    7. 张泽,焦永刚,任永忠. 线性扰动条件下饱和土体扩张计算分析. 兰州工业学院学报. 2022(06): 35-39 .
    8. 周攀,李镜培,李亮,谢峰. 结构性黄土排水柱孔扩张问题弹塑性解析. 岩石力学与工程学报. 2021(01): 175-186 .
    9. 李镜培,周攀,李亮,谢峰,崔纪飞. 饱和结构性黄土不排水柱孔扩张问题弹塑性解. 同济大学学报(自然科学版). 2021(02): 163-172 .
    10. 杜永龙,张崇厚,胡雨村. 基于结构扰动下模袋桩柱孔扩张模型研究. 应用力学学报. 2021(03): 1185-1195 .
    11. 桑松魁,王永洪,张明义,孔亮,吴文兵,陈志雄,李兆龙,张启军. 粉土与粉质黏土互层中静压桩桩土界面孔隙水压力. 吉林大学学报(地球科学版). 2021(05): 1551-1559 .

    Other cited types(7)

Catalog

    Article views (251) PDF downloads (178) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return