Citation: | WANG Changhong, WU Zhaoxin, WANG Kun, TANG Daofei, MA Chengtao. Stochastic mechanics-based Bayesian method for calibrating geotechnical parameters of Shanghai deep soft clay using CPTU data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 75-84. DOI: 10.11779/CJGE20211494 |
[1] |
DUAN W, CHANDRA C S S, CAI G J, et al. Empirical correlations of soil parameters based on piezocone penetration tests (CPTU) for Hong Kong-Zhuhai-Macau Bridge (HZMB) project[J]. Transportation Geotechnics, 2021, 30: 100605. doi: 10.1016/j.trgeo.2021.100605
|
[2] |
LIU X Y, CAI G J, LIU L L, et al. Improved p-y curve models for large diameter and super-long cast-in-place piles using piezocone penetration test data[J]. Computers and Geotechnics, 2021, 130: 103911. doi: 10.1016/j.compgeo.2020.103911
|
[3] |
SEDMAK V A. Expansion of cavities in infinite soil mass[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(3): 265-290. doi: 10.1061/JSFEAQ.0001740
|
[4] |
李镜培, 李林, 孙德安, 等. 饱和软土地层静压沉桩阻力理论研究[J]. 岩土工程学报, 2015, 37(8): 1454-1461. doi: 10.11779/CJGE201508014
LI Jingpei, LI Lin, SUN De'an, et al. Theoretical study on sinking resistance of jacked piles in saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1454-1461. (in Chinese) doi: 10.11779/CJGE201508014
|
[5] |
郑金辉, 齐昌广, 王新泉, 等. 考虑砂土颗粒破碎的柱孔扩张问题弹塑性分析[J]. 岩土工程学报, 2019, 41(11): 2156-2164. doi: 10.11779/CJGE201911023
ZHENG Jinhui, QI Changguang, WANG Xinquan, et al. Elasto-plastic analysis of cylindrical cavity expansion considering particle breakage of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2156-2164. (in Chinese) doi: 10.11779/CJGE201911023
|
[6] |
武孝天. 搅拌桩和管桩施工的挤土效应及其控制措施研究[D]. 上海: 上海交通大学, 2020.
WU Xiaotian. Study on the Squeezing Effect and its Control Measures for Mixing Piles and Pipe Piles Construction[D]. Shanghai: Shanghai Jiao Tong University, 2020. (in Chinese)
|
[7] |
ROBERTSON P K. Cone penetration test (CPT)-based soil behaviour type (SBT) classification system—an update[J]. Canadian Geotechnical Journal, 2016, 53(12): 1910-1927. doi: 10.1139/cgj-2016-0044
|
[8] |
蔡国军, 刘松玉, 童立元, 等. 基于静力触探测试的国内外砂土液化判别方法[J]. 岩石力学与工程学报, 2008, 27(5): 1019-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200805021.htm
CAI Guojun, LIU Songyu, TONG Liyuan, et al. Evaluation of liquefaction of sandy soils based on cone penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1019-1027. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200805021.htm
|
[9] |
刘松玉, 郭易木, 张国柱, 等. 热传导CPT探头的研发与应用[J]. 岩土工程学报, 2020, 42(2): 354-361. doi: 10.11779/CJGE202002017
LIU Songyu, GUO Yimu, ZHANG Guozhu, et al. Development and application of heat conduction CPT probe[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 354-361. (in Chinese) doi: 10.11779/CJGE202002017
|
[10] |
蒋水华, 冯泽文, 刘贤, 等. 基于自适应贝叶斯更新方法的岩土参数概率分布推断[J]. 岩土力学, 2020, 41(1): 325-335. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001038.htm
JIANG Shuihua, FENG Zewen, LIU Xian, et al. Inference of probability distributions of geotechnical parameters using adaptive Bayesian updating approach[J]. Rock and Soil Mechanics, 2020, 41(1): 325-335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001038.htm
|
[11] |
郑栋, 黄劲松, 李典庆. 基于多源信息融合的路堤沉降预测方法[J]. 岩土力学, 2019, 40(2): 709-719, 727. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902034.htm
ZHENG Dong, HUANG Jinsong, LI Dianqing. An approach for predicting embankment settlement by integrating multi-source information[J]. Rock and Soil Mechanics, 2019, 40(2): 709-719, 727. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902034.htm
|
[12] |
WANG C H, OSORIO-MURILLO C A, ZHU H H, et al. Bayesian approach for calibrating transformation model from spatially varied CPT data to regular geotechnical parameter[J]. Computers and Geotechnics, 2017, 85: 262-273.
|
[13] |
CHING J, PHOON K. Constructing site-specific multivariate probability distribution model by Bayesian machine learning[J]. ASCE Journal of Engineering Mechanics, 2019, 145(01): 04018126.
|
[14] |
ROSCOE K H, BURLAND J B. On the Generalized Stress-strain Behavior of "Wet" Clay[C]// In Engineering plasticity. Cambridge: Cambridge University Press, 1968, 535-609.
|
[15] |
CHEN S L, ABOUSLEIMAN Y. Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified Cam Clay soil[J]. Geotechnique, 2012, 62(5): 447-456.
|
[16] |
CHEN S L, ABOUSLEIMAN Y N. Exact drained solution for cylindrical cavity expansion in modified Cam-clay soil[J]. Géotechnique, 2013, 63(6): 510-517.
|
[17] |
MO P Q, GAO X W, YANG W B, et al. A cavity expansion-based solution for interpretation of CPTu data in soils under partially drained conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(7): 1053-1076.
|
[18] |
孔压静力触探技术规程: DB32/T 2977—2016[S]. 南京: 江苏省质量技术监督局, 2016.
Technical Specification for Piezocone Penetration Test: DB32/T 2977—2016[S]. Nanjing: Jiangsu Provincial Bureau of Quality and Technical Supervision, 2016. (in Chinese)
|
[19] |
HIGHT D W, BOND A J, LEGGE J D. Characterization of the Bothkennaar clay: an overview[J]. Géotechnique, 1992, 42(2): 303-347.
|
[20] |
韦来生. 贝叶斯统计[M]. 北京: 高等教育出版社, 2016.
WEI Laisheng. Bayesian Statistics[M]. Beijing: Higher Education Press, 2016. (in Chinese)
|
[21] |
RUBIN Y, CHEN X Y, MURAKAMI H, et al. A Bayesian approach for inverse modeling, data assimilation, and conditional simulation of spatial random fields[J]. Water Resources Research, 2010, 46(10): 2009WR008799.
|
[22] |
武朝军. 上海浅部土层沉积环境及其物理力学性质[D]. 上海: 上海交通大学, 2016.
WU Zhaojun. Depositional Environment and Geotechnical Properties for the Upper Shanghai Clays[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
|
[23] |
刘丽斌. 上海深层黏土的物理性质、超固结特性及本构模拟[D]. 上海: 上海交通大学, 2019.
LIU Libin. Physical Properties, Over-Consolidation and Constitutive Modeling of Shanghai Deep Clays[D]. Shanghai: Shanghai Jiao Tong University, 2019. (in Chinese)
|
[24] |
何为, 薛卫东, 唐斌. 优化试验设计方法及数据分析[M]. 北京: 化学工业出版社, 2012.
HE Wei, XUE Weidong, TANG Bin. Optimization Design Method and Data Analysis[M]. Beijing: Chemical Industry Press, 2012. (in Chinese)
|
[25] |
XU Z H, LI J, WENG Q P, et al. Analysis method of ultra-deep circular excavation and its application[J]. Construction Technology, 2022, 51(1): 13-20.
|
1. |
许博闻,兰恒星,刘世杰. 界面形态对黄土-泥岩接触面剪切力学特性影响研究. 工程地质学报. 2024(02): 448-462 .
![]() | |
2. |
黄晓虎,魏兆亨,易武,郭飞,黄海峰,肖宇煌. 裂隙优势流入渗诱发堆积层滑坡浅层破坏机理研究. 岩土工程学报. 2024(06): 1136-1145 .
![]() | |
3. |
赵宽耀,许强,陈婉琳,彭大雷,高登辉. 黄土塬边漫灌区土体水入渗过程研究. 岩土力学. 2024(09): 2754-2764 .
![]() | |
4. |
王立朝,任三绍,李金秋. 降雨作用下古滑坡复活机理物理模拟试验研究. 中国地质灾害与防治学报. 2024(05): 21-31 .
![]() | |
5. |
王诏楷. 地下水人工回灌颗粒沉积研究进展. 江淮水利科技. 2023(01): 9-14 .
![]() | |
6. |
周峙,罗易,张家铭,孙狂飙. 考虑裂隙面积率的裂隙性黏土优势流双域入渗规律研究. 安全与环境工程. 2023(02): 109-118 .
![]() | |
7. |
吴玮江,宋丙辉,刘迪,安亚鹏. 黄土塬区包气带水分运移特征研究. 水文地质工程地质. 2023(03): 12-22 .
![]() | |
8. |
曾鹏,王宇豪,张天龙,张琳,南骁聪. 基于NSGA-Ⅱ遗传算法的黄土滑坡参数反分析与稳定性预测. 地球科学. 2023(05): 1675-1685 .
![]() | |
9. |
冯乐涛,吴玮江,刘兴荣,宿星,万朝东. 黄土高原降水入渗方式与引发滑坡研究——以甘肃黄土地区为例. 科学技术与工程. 2023(14): 5937-5945 .
![]() | |
10. |
许增光,李海洋,柴军瑞,曹成,陈东来. 堤坝内集中渗漏通道与周围介质水量交换研究. 水力发电学报. 2023(07): 12-23 .
![]() | |
11. |
赵宽耀,许强,高登辉,刘方洲,彭大雷,陈婉琳. 坡底饱和型黄土滑坡离心模拟试验. 岩土力学. 2023(11): 3213-3223 .
![]() | |
12. |
赵鲁庆,彭建兵,马鹏辉,冷艳秋,朱兴华. 黄土细观界面及其灾害效应研究初探. 工程地质学报. 2023(06): 1783-1798 .
![]() | |
13. |
许强,陈婉琳,蒲川豪,袁爽,刘佳良. 基于自然的解决方案在黄土高原重大工程灾变防控中的理论与实践. 工程地质学报. 2022(04): 1179-1192 .
![]() | |
14. |
宁瑞浩,冷艳秋,何芝远,李泽坤,马哲. 基于CT的黄土孔隙尺度优先流特性. 科学技术与工程. 2022(23): 9927-9936 .
![]() | |
15. |
蒋小虎,黄跃廷,胡海军,陈铄,陈锐,王崇华,汪慧,康顺祥. 基于原位双环、试坑浸水试验和数值模拟反演的Q_3黄土饱和渗透系数对比研究. 岩土力学. 2022(11): 2941-2951 .
![]() | |
16. |
李同录,汪颖,胡向阳,李萍,王宇. 厚层非饱和黄土中优势流和活塞流的讨论. 工程地质学报. 2022(06): 1842-1848 .
![]() | |
17. |
张永双,吴瑞安,任三绍. 降雨优势入渗通道对古滑坡复活的影响. 岩石力学与工程学报. 2021(04): 777-789 .
![]() | |
18. |
孙恒飞,朱兴华,成玉祥,张智锋,张卜平,蔡佳乐. 黄土优势渗流研究进展与展望. 自然灾害学报. 2021(06): 1-12 .
![]() | |
19. |
侯孝东,涂国祥,邱潇,李明,王清,钱昭宇. 汉源九襄地区深厚砾石层渗透特性研究. 水利与建筑工程学报. 2020(04): 192-197 .
![]() |