• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FANG Wei, ZHOU Zhi-gang. Sand-fall molding process and influencing factors of model porosity[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2086-2093. DOI: 10.11779/CJGE201911014
Citation: FANG Wei, ZHOU Zhi-gang. Sand-fall molding process and influencing factors of model porosity[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2086-2093. DOI: 10.11779/CJGE201911014

Sand-fall molding process and influencing factors of model porosity

More Information
  • Received Date: May 04, 2018
  • Published Date: November 24, 2019
  • Using the PFC3D as the research tool, accompanied with the laboratory tests, the sand-fall molding process and porosity variation of model are analyzed. Firstly, the falling order and arching phenomenon are studied. Thus, the flow model for the straight hopper with a central bottom hole is suggested, and an optimized square outlet is adopted in the laboratory tests. Subsequently, the PFC3D is utilized to simulate and to verify the influences of height, aperture and velocity of outlet on the model porosity. The research results show that the particles leak densely when the aperture increases, thus, the particles of model can not adjust their positions in time, and the porosity remains large. With the increase of the velocity of outlet, the times of stacking and colliding both increase, and the porosity decreases. When the falling height increases, the kinetic energy is amplified in collision, and the porosity decreases. For the above mentioned factors, both the physical and the numerical tests show the same rules, and the suggested multivariate correlation model has a good adaptability.
  • [1]
    LAGIOIA R, SANZENI A.Water and vacuum pluviation of sand specimens for the triaxial apparatus[J]. Soil & Foundations, 2006, 46(1): 61-67.
    [2]
    李浩, 罗强, 张正. 砂雨法制备砂土地基模型控制要素试验研究[J]. 岩土工程学报, 2014, 36(10): 1872-1878.
    (LI Hao, LUO Qiang, ZHANG Zheng.Experimental study on control element of sand pourer preparation of sand foundation model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1872-1878. (in Chinese))
    [3]
    马险峰, 孔令刚, 方薇. 砂雨法试样制备平行试验研究[J]. 岩土工程学报, 2014, 36(10): 1791-1800.
    (MA Xian-feng, KONG Ling-gang, FANG Wei.Parallel tests on preparation of samples with sand pourer[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1791-1800. (in Chinese))
    [4]
    程朋, 王勇. 砂雨法制备三轴砂样的影响因素及均匀性研究[J]. 长江科学院院报, 2016, 33(10): 79-83.
    (CHENG Peng, WANG Yong.Factors and homogeneity of triaxial sand specimen preparation with air pluviation[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(10): 79-83. (in Chinese))
    [5]
    周健, 池毓蔚, 池永. 砂土双轴试验的颗粒流模拟[J]. 岩土工程学报, 2000, 22(6): 701-704.
    (ZHOU Jian, CHI Yu-wei, CHI Yong.Simulation of biaxial test on sand by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 701-704. (in Chinese))
    [6]
    孔亮, 彭仁. 颗粒形状对类砂土力学性质影响的颗粒流模拟[J]. 岩石力学与工程学报, 2011, 30(10): 2112-2119.
    (KONG Liang, PENG Ren.Particle flow simulation of influence of particle size shape on mechanical properties of quasi-sands[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2112-2119. (in Chinese))
    [7]
    张孟喜, 张石磊. H-V加筋土性状的颗粒流细观模拟[J]. 岩土工程学报, 2008, 30(5): 625-631.
    (ZHANG Meng-xi, ZHANG Shi-lei.Behavior of soil reinforced with H-V inclusions by PFC2D[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 625-631. (in Chinese))
    [8]
    周健, 白彦峰, 张昭. 砂土中群桩室内模型试验及颗粒流模拟研究[J]. 岩土工程学报, 2009, 31(8): 1275-1280.
    (ZHOU Jian, BAI Yan-feng, ZHANG Zhao.Lab model tests and PFC2D modeling of pile groups in sands[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1275-1280. (in Chinese))
    [9]
    贾敏才, 王磊, 周健. 干砂强夯动力特性的细观颗粒流分析[J]. 岩土力学, 2009, 30(4): 871-878.
    (JIA Min-cai, WANG Lei, ZHOU Jian.Mesomechanical analysis of characteristics of dry sands in response to dynamic compaction with PFC2D [J]. Rock and Soil Mechanics, 2009, 30(4): 871-878. (in Chinese))
    [10]
    王连庆, 高谦, 王建国. 自然崩落采矿法的颗粒流数值模拟[J]. 北京科技大学学报, 2007, 29(6): 557-561.
    (WANG Lian-qing, GAO Qian, WANG Jian-guo.Numerical simulation of natural caving method based on particle flow code in two dimensions[J]. Journal of University of Science and Technology Beijing, 2007, 29(6): 557-561. (in Chinese))
    [11]
    王涛, 盛谦, 熊将. 基于颗粒流方法自然崩落法数值模拟研究[J]. 岩石力学与工程学报, 2007, 26(增刊2): 4202-4207.
    (WANG Tao, SHENG Qian, XIONG Jiang.Research on numerical simulation of natural caving method based on particle flow method[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 4202-4207. (in Chinese))
    [12]
    CUNDALL P A.PFC2D user’s manual (Version 3.1)[M]. Minnesota: Itasca Consulting Group, Inc, 2004.
    [13]
    陆厚根. 粉体技术导论[M]. 上海: 同济大学出版社, 1998.
    (LU Hou-gen.Introduction of powder technology[M]. Shanghai: Tongji University Press, 1998. (in Chinese))
    [14]
    陶珍东, 郑少华. 粉体工程与设备[M]. 2版. 北京: 化学工业出版社, 2010.
    (TAO Zhen-dong, ZHENG Shao-hua.Powder technology and equipment[M]. 2nd ed. Beijing: Chemical Industry Press, 2010. (in Chinese))
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return