• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FANG Wei, ZHOU Zhi-gang. Sand-fall molding process and influencing factors of model porosity[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2086-2093. DOI: 10.11779/CJGE201911014
Citation: FANG Wei, ZHOU Zhi-gang. Sand-fall molding process and influencing factors of model porosity[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2086-2093. DOI: 10.11779/CJGE201911014

Sand-fall molding process and influencing factors of model porosity

More Information
  • Received Date: May 04, 2018
  • Published Date: November 24, 2019
  • Using the PFC3D as the research tool, accompanied with the laboratory tests, the sand-fall molding process and porosity variation of model are analyzed. Firstly, the falling order and arching phenomenon are studied. Thus, the flow model for the straight hopper with a central bottom hole is suggested, and an optimized square outlet is adopted in the laboratory tests. Subsequently, the PFC3D is utilized to simulate and to verify the influences of height, aperture and velocity of outlet on the model porosity. The research results show that the particles leak densely when the aperture increases, thus, the particles of model can not adjust their positions in time, and the porosity remains large. With the increase of the velocity of outlet, the times of stacking and colliding both increase, and the porosity decreases. When the falling height increases, the kinetic energy is amplified in collision, and the porosity decreases. For the above mentioned factors, both the physical and the numerical tests show the same rules, and the suggested multivariate correlation model has a good adaptability.
  • [1]
    LAGIOIA R, SANZENI A.Water and vacuum pluviation of sand specimens for the triaxial apparatus[J]. Soil & Foundations, 2006, 46(1): 61-67.
    [2]
    李浩, 罗强, 张正. 砂雨法制备砂土地基模型控制要素试验研究[J]. 岩土工程学报, 2014, 36(10): 1872-1878.
    (LI Hao, LUO Qiang, ZHANG Zheng.Experimental study on control element of sand pourer preparation of sand foundation model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1872-1878. (in Chinese))
    [3]
    马险峰, 孔令刚, 方薇. 砂雨法试样制备平行试验研究[J]. 岩土工程学报, 2014, 36(10): 1791-1800.
    (MA Xian-feng, KONG Ling-gang, FANG Wei.Parallel tests on preparation of samples with sand pourer[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1791-1800. (in Chinese))
    [4]
    程朋, 王勇. 砂雨法制备三轴砂样的影响因素及均匀性研究[J]. 长江科学院院报, 2016, 33(10): 79-83.
    (CHENG Peng, WANG Yong.Factors and homogeneity of triaxial sand specimen preparation with air pluviation[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(10): 79-83. (in Chinese))
    [5]
    周健, 池毓蔚, 池永. 砂土双轴试验的颗粒流模拟[J]. 岩土工程学报, 2000, 22(6): 701-704.
    (ZHOU Jian, CHI Yu-wei, CHI Yong.Simulation of biaxial test on sand by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 701-704. (in Chinese))
    [6]
    孔亮, 彭仁. 颗粒形状对类砂土力学性质影响的颗粒流模拟[J]. 岩石力学与工程学报, 2011, 30(10): 2112-2119.
    (KONG Liang, PENG Ren.Particle flow simulation of influence of particle size shape on mechanical properties of quasi-sands[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2112-2119. (in Chinese))
    [7]
    张孟喜, 张石磊. H-V加筋土性状的颗粒流细观模拟[J]. 岩土工程学报, 2008, 30(5): 625-631.
    (ZHANG Meng-xi, ZHANG Shi-lei.Behavior of soil reinforced with H-V inclusions by PFC2D[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 625-631. (in Chinese))
    [8]
    周健, 白彦峰, 张昭. 砂土中群桩室内模型试验及颗粒流模拟研究[J]. 岩土工程学报, 2009, 31(8): 1275-1280.
    (ZHOU Jian, BAI Yan-feng, ZHANG Zhao.Lab model tests and PFC2D modeling of pile groups in sands[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1275-1280. (in Chinese))
    [9]
    贾敏才, 王磊, 周健. 干砂强夯动力特性的细观颗粒流分析[J]. 岩土力学, 2009, 30(4): 871-878.
    (JIA Min-cai, WANG Lei, ZHOU Jian.Mesomechanical analysis of characteristics of dry sands in response to dynamic compaction with PFC2D [J]. Rock and Soil Mechanics, 2009, 30(4): 871-878. (in Chinese))
    [10]
    王连庆, 高谦, 王建国. 自然崩落采矿法的颗粒流数值模拟[J]. 北京科技大学学报, 2007, 29(6): 557-561.
    (WANG Lian-qing, GAO Qian, WANG Jian-guo.Numerical simulation of natural caving method based on particle flow code in two dimensions[J]. Journal of University of Science and Technology Beijing, 2007, 29(6): 557-561. (in Chinese))
    [11]
    王涛, 盛谦, 熊将. 基于颗粒流方法自然崩落法数值模拟研究[J]. 岩石力学与工程学报, 2007, 26(增刊2): 4202-4207.
    (WANG Tao, SHENG Qian, XIONG Jiang.Research on numerical simulation of natural caving method based on particle flow method[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 4202-4207. (in Chinese))
    [12]
    CUNDALL P A.PFC2D user’s manual (Version 3.1)[M]. Minnesota: Itasca Consulting Group, Inc, 2004.
    [13]
    陆厚根. 粉体技术导论[M]. 上海: 同济大学出版社, 1998.
    (LU Hou-gen.Introduction of powder technology[M]. Shanghai: Tongji University Press, 1998. (in Chinese))
    [14]
    陶珍东, 郑少华. 粉体工程与设备[M]. 2版. 北京: 化学工业出版社, 2010.
    (TAO Zhen-dong, ZHENG Shao-hua.Powder technology and equipment[M]. 2nd ed. Beijing: Chemical Industry Press, 2010. (in Chinese))
  • Cited by

    Periodical cited type(8)

    1. 杨威. 基于原位测试方法的土体变形参数研究. 安徽建筑. 2024(04): 141-143 .
    2. 黄献文,姚直书,蔡海兵,李凯奇,唐楚轩. 基于微观结构重塑的非饱和冻土导热系数预测. 岩土力学. 2023(01): 193-205 .
    3. 陈磊. 基于静力触探测试的深基坑工程土体设计参数应用研究. 广东建材. 2023(04): 72-75 .
    4. 张德,张泽超,张璐璐,张洁,曹子君. 场地有限数据条件下土体不排水抗剪强度的概率分布的贝叶斯估计研究. 岩土工程学报. 2023(06): 1259-1268 . 本站查看
    5. 曹阳健. 基于原位测试方法的土体变形参数研究. 砖瓦. 2023(06): 66-69 .
    6. 汪明元,张国,潘孙珏徐,陶袁钦. 基于集合卡尔曼滤波的海洋土孔隙率预测研究. 工业建筑. 2023(06): 37-42 .
    7. 黄献文,赵光明,黄顺杰,王泽洲,王雪松,唐楚轩. 基于堆积颗粒几何特征的多尺度渗透注浆扩散半径预测. 岩石力学与工程学报. 2023(08): 2028-2040 .
    8. 柯琪睿,李长冬,姚文敏,范一博,李炳辰. 干湿循环下侏罗系软弱夹层剪切特性与抗剪强度参数概率表征. 水利水电技术(中英文). 2023(11): 192-204 .

    Other cited types(6)

Catalog

    Article views (268) PDF downloads (171) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return