• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LU De-chun, ZHANG Jun-hong, LIANG Jing-yu, DU Xiu-li. Strength properties of transversely isotropic soils based on characteristic mobilized plane[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2000-2008. DOI: 10.11779/CJGE201911004
Citation: LU De-chun, ZHANG Jun-hong, LIANG Jing-yu, DU Xiu-li. Strength properties of transversely isotropic soils based on characteristic mobilized plane[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2000-2008. DOI: 10.11779/CJGE201911004

Strength properties of transversely isotropic soils based on characteristic mobilized plane

More Information
  • Received Date: January 28, 2019
  • Published Date: November 24, 2019
  • Based on the internal friction of materials, the concept of the mobilized plane aims at revealing the mechanism of soil failure from the perspective of geometrical and physical mechanisms. With the characteristic stress concept, the characteristic mobilized plane under two-dimensional stress conditions is put forward, and the failure stress conditions of materials on the characteristic mobilized plane and those corresponding to the stress Mohr circle are derived. In addition, based on the existing understandings on the strength characteristics of the transverse isotropic soils, and also the relative positions among the major principal stress, the normal of the bedding plane and the normal of the characteristic mobilized plane, the characteristic strength parameter, as well as the failure stress conditions, are proposed by projecting the microstructure tensor into the relative orientation tensor between the characteristic mobilized plane and the bedding plane. The orientation effect of the bedding plane is also analyzed on the basis of the proposed failure condition. The correspondences of the relative orientation angle ζ between the bedding plane and the characteristic mobilized plane and the direction angle δ between the bedding plane and the major principal stress, as well as the effects of ζ and δ, are also analyzed. By using the sample preparation mould developed for the true triaxial tests with the freezing method, the samples with different bedding plane angles are prepared and used to carry out triaxial compression tests. The understanding and proposed failure condition for the failure of the transverse isotropic soils are verified by the predicted test results in this paper and in the literatures.
  • [1]
    童朝霞, 周少鹏, 姚仰平, 等. 测定各向异性砂土抗剪强度特性的新型直剪装置及初步应用[J]. 岩石力学与工程学报, 2012, 31(12): 2579-2584.
    (TONG Zhao-xia, ZHOU Shao-peng, YAO Yang-ping, et al.An improved direct shear apparatus for shear strength of anisotropic sands and its primary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2579-2584. (in Chinese))
    [2]
    LADE P V, RODRIGUEZ N M, VAN DYCK E J. Effects of principal stress directions on 3D failure conditions in cross-anisotropic sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2014, 140(2): 1-12.
    [3]
    YANG L T, LI X, YU H S, et al.A laboratory study of anisotropic geomaterials incorporating recent micromechanical understanding[J]. Acta Geotechnica, 2016, 11(5): 1111-1129.
    [4]
    LAM W, TATSUOKA F.Effects of initial anisotropic fabric and δ2 on strength and deformation characteristics of sand[J]. Soils and Foundations, 1988, 28(1): 89-106.
    [5]
    GUO P.Modified direct shear test for anisotropic strength of sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2008, 134(9): 1311-1318.
    [6]
    TONG Z X, FU P C, ZHOU S P, et al.Experimental investigation of shear strength of sands with inherent fabric anisotropy[J]. Acta Geotechnica, 2014, 9(2): 257-275.
    [7]
    于艺林, 童朝霞, 张建民. 应力主轴旋转条件下各向异性云母砂变形的试验研究[J]. 世界地震工程, 2010, 26(增刊1): 85-89.
    (YU Yi-lin, TONG Zhao-xia, ZHANG Jian-min.Experiments study on anisotropy sands subjected to rotation of principal stress axes[J]. World Earthquake Engineering, 2010, 26(S1): 85-89. (in Chinese))
    [8]
    MIRGHASEMI A A N M. The effect of initial elongation of elliptical particles on macro-micromechanical behavior during direct shear test[J]. Procedia Engineering, 2015(102): 1476-1483.
    [9]
    FU P C, DAFALIAS Y F.Study of anisotropic shear strength of granular materials using DEM simulation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(10): 1098-1126.
    [10]
    GAO Z W, ZHAO J D, YAO Y P.A generalized anisotropic failure criterion for geomaterials[J]. International Journal of Solids and Structures, 2010, 47(22/23): 3166-3185.
    [11]
    PIETRUSZCZAK S, MROZ Z.Formulation of anisotropic failure criteria incorporating a microstructure tensor[J]. Computers and Geotechnics, 2000, 26(2): 105-112.
    [12]
    KONG Y X, ZHAO J D, YAO Y P.A failure criterion for cross-anisotropic soils considering microstructure[J]. Acta Geotechnica, 2013, 8(6): 665-673.
    [13]
    LÜ X L, HUANG M S, ANDRADE J E.Strength criterion for cross-anisotropic sand under general stress conditions[J]. Acta Geotechnica, 2016, 11(6): 1339-1350.
    [14]
    YAO Y P, TIAN Y, GAO Z W.Anisotropic UH model for soils based on a simple transformed stress method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(1): 54-78.
    [15]
    曹威, 王睿, 张建民. 横观各向同性砂土的强度准则[J]. 岩土工程学报, 2016, 38(11): 2026-2032.
    (CAO Wei, WANG Rui, ZHANG Jian-min.New strength criterion for sand with cross-anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2026-2032. (in Chinese))
    [16]
    张连卫, 张建民, 张嘎. 基于SMP的粒状材料各向异性强度准则[J]. 岩土工程学报, 2008, 30(8): 1107-1111.
    (ZHANG Lian-wei, ZHANG Jian-min, ZHANG Ga.SMP-based anisotropic strength criteria of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1107-1111. (in Chinese))
    [17]
    姚仰平, 孔玉侠. 横观各向同性土强度与破坏准则的研究[J]. 水利学报, 2012, 39(1): 43-50.
    (YAO Yang-ping, KONG Yu-xia.Study on strength and failure criterion of cross-anisotropic soil[J]. Journal of Hydraulic Engineering, 2012, 39(1): 43-50. (in Chinese))
    [18]
    路德春, 梁靖宇, 王国盛, 等. 横观各向同性土的三维强度准则[J]. 岩土工程学报, 2018, 40(1): 54-63.
    (LU De-chun, LIANG Jing-yu, WANG Guo-sheng, et al.Three-dimensional strength criterion for transverse isotropic geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 54-63. (in Chinese))
    [19]
    LU D C, LIANG J Y, DU X L, et al.A novel transversely isotropic strength criterion for soils based on a mobilised plane approach[J]. Géotechnique, 2019, 69(3): 234-250.
    [20]
    LU D C, MA C, DU X L, et al.Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept[J]. International Journal of Geomechanics, 2017, 17(2): 4016058.
    [21]
    LU D C, LIANG J Y, DU X L, et al.Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule[J]. Computers and Geotechnics, 2019, 105: 277-290.
    [22]
    ODA M, KOISHIKAWA I, HIGUCHI T.Experimental study of anisotropic shear strength of sand by plane strain test[J]. Soils and Foundations, 1978, 18(1): 25-38.
    [23]
    MATSUOKA H, JUNICHI H, KIYOSHI H.Deformation and failure of anisotropic sand deposits[J]. Soil Mechanics and Foundation Engineering, 1984, 32(11): 31-36.
    [24]
    PARK CS T F. 1994 Anisotropic strength and deformation of sands in plane strain compression[C]// Proc XIII ISCMFE(Vol I). New Delhi, India, 1994: 1-4.
    [25]
    LIU M D, INDRARATNA B N.General strength criterion for geomaterials including anisotropic effect[J]. International Journal of Geomechanics, 2011, 11(3): 251-262
  • Related Articles

    [1]XU Ping, SHAO Sheng-jun, FANG Ling-yun, SUN Zhi-jun. Cross-isotropic strength criteria based on spatial plane variation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1036-1043. DOI: 10.11779/CJGE202206007
    [2]ZHANG Yi-jiang, CHEN Sheng-shui, FU Zhong-zhi. Experimental study on microstructure and compressibility of iron ore tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 61-66. DOI: 10.11779/CJGE2020S2011
    [3]HUANG Chun-xia, HUANG Min, CAI Wei, CHEN Guo-xing, LIU Chang, ZHANG Yan-mei. Microstructure of silt with different clay contents[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 758-764. DOI: 10.11779/CJGE202004020
    [4]LU De-chun, LIANG Jing-yu, WANG Guo-sheng, DU Xiu-li. Three-dimensional strength criterion for transverse isotropic geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 54-63. DOI: 10.11779/CJGE201801004
    [5]JIANG Ming-jing, LI Zhi-yuan, HUANG He-peng, LIU Jun. Experimental study on microstructure and mechanical properties of seabed soft soil from South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 17-20. DOI: 10.11779/CJGE2017S2005
    [6]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [7]CHEN Yu-long. Microstructure of expansive soil from Yunnan Province[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 334-339.
    [8]Microstructural change of soft clay before and after one-dimensional compression creep[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1688-1694.
    [9]TANG Chaosheng, SHI Bin, WANG Baojun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560-565.
    [10]WANG Baojun, SHI Bin, LIU Zhibin, CAI Yi. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 244-247.
  • Cited by

    Periodical cited type(2)

    1. 张飞,胡光华. 土体抗剪强度各向异性对边坡滑动模式与稳定性的影响. 江苏大学学报(自然科学版). 2025(01): 91-97 .
    2. 梁靖宇,沈万涛,路德春,齐吉琳. 考虑沉积角影响的冻结砂土单轴压缩试验研究. 岩土力学. 2023(04): 1065-1074 .

    Other cited types(0)

Catalog

    Article views (259) PDF downloads (165) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return