Citation: | LIANG Ke, CHEN Guo-xing, WANG Yan-zhen, QIN You. Coupled shear strain-damage state model for prediction of shear modulus of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1863-1871. DOI: 10.11779/CJGE201910010 |
[1] |
KOKUSHO T.Cyclic triaxial test of dynamic soil properties for wide strain range[J]. Soils and Foundations, 1980, 20(2): 45-60.
|
[2] |
梁珂, 陈国兴, 何杨, 等. 基于相关函数理论的动模量和阻尼比计算新方法[J]. 岩土力学, 2019, 40(4): 1368-1376.
(LIANG Ke, CHEN Guo-xing, HE Yang, et al.An innovative method for the calculation of dynamic modulus and damping ratio based on the theory of correlation function[J]. Rock and Soil Mechanics, 2019, 40(4): 1368-1376. (in Chinese)) |
[3] |
MENQ F.Dynamic properties of sandy and gravelly soils[D]. Austin: The University of Texas at Austin, 2003.
|
[4] |
HARDIN B O, DRNEVICH V P.Shear modulus and damping in soils: design equations and curves[J]. Journal of Soil Mechanics and Foundations Division, 1972, 98(SM7): 667-692.
|
[5] |
MARTIN P P, SEED H B.One-dimensional dynamic ground response analyses[J]. Journal of the Geotechnical Engineering Division, 1982, 108(7): 935-952.
|
[6] |
MATASOVIC N, VUCETIC M.Cyclic characterization of liquefiable sands[J]. Journal of Geotechnical Engineering, 1993, 11(119): 1805-1822.
|
[7] |
DARENDELI M B.Develope of a new family of normalized modulus reduction and material damping curves[D]. Austin: The University of Texas at Austin, 2001.
|
[8] |
CHEN G, ZHOU Z, SUN T, et al.Shear modulus and damping ratio of sand-gravel mixtures over a wide strain range[J]. Journal of Earthquake Engineering, 2019, 23(8): 1407-1440.
|
[9] |
POLITO C P, GREEN R A, LEE J.Pore pressure generation models for sands and silty soils subjected to cyclic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(10): 1490-1500.
|
[10] |
JAFARIAN Y, TOWHATA I, BAZIAR M H, et al.Strain energy based evaluation of liquefaction and residual pore water pressure in sands using cyclic torsional shear experiments[J]. Soil Dynamics and Earthquake Engineering, 2012, 35: 13-28.
|
[11] |
潘坤, 杨仲轩. 不规则动荷载作用下砂土孔压特性试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 79-84.
(PAN Kun, YANG Zhong-xuan.Pore pressure characteristics of sand subjected to irregular loadings[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 79-84. (in Chinese)) |
[12] |
赵丁凤, 梁珂, 陈国兴, 等. 剪切-体积应变耦合的孔压增量模型试验研究[J]. 岩土力学, 2019, 40(5): 1832-1840.
(ZHAO Ding-feng, LIANG Ke, CHEN Guo-xing, et al.Experimental investigation on a new incremental excess pore pressure model characterized by cyclic shear-volume coupling[J]. Rock and Soil Mechanics, 2019, 40(5): 1832-1840. (in Chinese)) |
[13] |
ASTM D2487—11 Standard practice for classification of soils for engineering purposes[S]. 2011.
|
[14] |
吴琪, 陈国兴, 周正龙, 等. 细粒含量对细粒-砂粒-砾粒混合料动强度的影响[J]. 岩土工程学报, 2017, 39(6): 1038-1047.
(WU Qi, CHEN Guo-xing, ZHOU Zheng-long, et al.Influences of fines content on cyclic resistance ratio of fines-sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1038-1047. (in Chinese)) |
[15] |
王谦, 李娜, 王平, 等. 甘南地区黄土的动模量与阻尼比特性研究[J]. 岩土工程学报, 2017, 39(增刊1): 192-197.
(WANG Qian, LI Na, WANG Ping, et al.Behaviors of dynamic modulus and damping ratio of loess in Gannan region of Gansu Province[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 192-197. (in Chinese)) |
[16] |
李瑞山, 陈龙伟, 袁晓铭, 等. 荷载频率对动模量阻尼比影响的试验研究[J]. 岩土工程学报, 2017, 39(1): 71-80.
(LI Rui-shan, CHEN Long-wei, YUAN Xiao-ming, et al.Experimental study on influences of different loading frequencies on dynamic modulus and damping ratio[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 71-80. (in Chinese)) |
[17] |
孔令伟, 臧濛, 郭爱国. 湛江黏土动剪切模量的结构损伤效应与定量表征[J]. 岩土工程学报, 2017, 39(12): 2149-2157.
(KONG Ling-wei, ZANG Meng, GUO Ai-guo.Structural damage effect on dynamic shear modulus of Zhanjiang clay and quantitative characterization[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2149-2157. (in Chinese)) |
[18] |
梁珂, 何杨, 陈国兴. 南沙珊瑚砂的动剪切模量和阻尼比特性试验研究[J]. 岩土力学, 待刊. (LIANG Ke, HE Yang, CHEN Guo-xing. Experimental study on dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Island[J]. Rock and Soil Mechanics, in press.
|
[19] |
CHEN G X, ZHAO D F, CHEN W Y, JUANG C H.Excess pore-water pressure generation in cyclic undrained testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(7): 04019022.
|
[1] | MA Shao-kun, WANG Bo, LIU Yin, SHAO Yu, WANG Hong-gang, WANG Yan-li. Large-scale dynamic triaxial tests on saturated gravel soil in Nanning metro area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 168-174. DOI: 10.11779/CJGE201901019 |
[2] | GAO Juan, LAI Yuan-ming. Damage and pressure melting analysis of frozen saline soils in process of triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 707-715. DOI: 10.11779/CJGE201804015 |
[3] | KONG Ling-wei, ZANG Meng, GUO Ai-guo. Structural damage effect on dynamic shear modulus of Zhanjiang clay and quantitative characterization[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2149-2157. DOI: 10.11779/CJGE201712001 |
[4] | SHAO Long-tan, LIU Gang, GUO Xiao-xia. Effects of strain localization of triaxial samples in post-failure state[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 385-394. DOI: 10.11779/CJGE201603001 |
[5] | ZHANG Ming, WANG Fei, YANG Qiang. Statistical damage constitutive model for rocks based on triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 1965-1971. |
[6] | GU Chuan, CAI Yuan-qiang, WANG Jun. Coupling effects of P-waves and S-waves based on cyclic triaxial tests with cyclic confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1903-1909. |
[7] | HUANG Bo, DING Hao, CHEN Yun-min. Simulation of high-speed train load by dynamic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 195. |
[8] | KUO Yu-shu, ACHMUS Martin, ABDEL-RAHMAN Khalid. Estimation of lateral deformation of monopile foundations by use of cyclic triaxial tests [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1729-1734. |
[9] | Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100. |
[10] | He Changrong. Dynamic Triaxial Test on Modulus and Damping[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(2): 42-51. |
1. |
赵再昆,王铁行,金鑫,张亮. 高温作用下非饱和黄土水热迁移试验研究. 岩土工程学报. 2024(01): 151-161 .
![]() | |
2. |
赵再昆,王铁行,张亮,金鑫,鲁洁,阮嘉斌,邢昱. 高温作用下非饱和黄土裂隙演化及其定量分析. 岩土力学. 2024(05): 1297-1308 .
![]() | |
3. |
张路,倪晓逸,樊恒辉,高策,杜宇航. 热力加固对压实黄土工程性质影响的试验研究. 地下空间与工程学报. 2024(S1): 77-83 .
![]() | |
4. |
张潜华. 微波技术在路基软土力学性质修复中的试验研究. 西部交通科技. 2023(01): 75-77 .
![]() | |
5. |
曾召田,崔哲旗,孙德安,姚志,潘斌. 南宁膨胀土持水性能的温度效应及微观机制. 岩土力学. 2023(08): 2177-2185 .
![]() | |
6. |
蒋银强,梁建楠,赵雅贞,段朕,赵昊洋. 微波加热对膨胀土膨胀性影响的试验研究. 南阳理工学院学报. 2023(06): 68-72 .
![]() | |
7. |
蔡国庆,刘祎,徐润泽,李舰,赵成刚. 干化-湿化路径下红黏土微观结构演化规律研究. 中国科学:技术科学. 2021(02): 221-230 .
![]() | |
8. |
程强强,潘世宁,肖蒙恩,何一鸣. 软黏土筛分烘测试验装置研制与应用. 江苏建筑职业技术学院学报. 2019(04): 1-4 .
![]() |