• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WEI Gang, WANG Chen, CAI Shi-qi, XU Xun, HONG Zi-han, CUI Cheng-hong, XU Yin-feng. Model tests on influences of quasi-rectangular shield construction on underground pipelines[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1489-1495. DOI: 10.11779/CJGE201908013
Citation: WEI Gang, WANG Chen, CAI Shi-qi, XU Xun, HONG Zi-han, CUI Cheng-hong, XU Yin-feng. Model tests on influences of quasi-rectangular shield construction on underground pipelines[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1489-1495. DOI: 10.11779/CJGE201908013

Model tests on influences of quasi-rectangular shield construction on underground pipelines

More Information
  • Received Date: August 16, 2018
  • Published Date: August 24, 2019
  • Excavation of quasi-rectangular shield tunnels causes uneven settlement of soils in pipelines, resulting in longitudinal deformation and failure of the pipelines. The indoor shrinkage model tests are conducted for the construction of quasi-rectangular shield tunnels. The influencing factors of the relative position of tunnels, buried depth of pipelines and soil loss rate are taken into account. The rules of subsidence, deformation of underground pipelines and surface settlement in dry sand are studied. The results reveal that the vertical displacement curve of the pipelines is Gaussian, the reverse bending point of the vertical displacement appears near the tunnel axis, the bending moment of the pipelines is “M” type distribution, and the maximum vertical displacement and bending moment are located directly above the tunnel axis. The impact of skew conditions of pipelines and tunnels is greater than that of their vertical conditions. The deeper the pipeline is, the larger the influence is. The vertical displacement of the pipelines decreases with the decrease of the soil loss rate. The vertical displacement of the pipelines directly above the tunnel axis and the maximum positive bending moment and two large negative bending moments of the pipelines decrease greatly, and the both sides of the pipelines are less affected. The surface settlement is directly affected by the soil loss, and the settlement value is larger than that of the underground pipelines.
  • [1]
    PECK R B.Deep excavations and tunneling in soft ground[C]// Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, 1969: 225-290.
    [2]
    吴为义. 盾构隧道周围地下管线的性状研究[D]. 杭州: 浙江大学, 2008.
    (WU Wei-yi.Study on mechanical behaviors of buried pipelines induced by shield tunneling construction[D]. Hangzhou: Zhejiang University, 2008. (in Chinese))
    [3]
    李兴高, 王霆. 柔性管线安全评价的简便方法[J]. 岩土力学, 2008, 29(7): 1861-1864, 1876.
    (LI Xing-gao, WANG Ting.Simple method for evaluating safety of flexible pipelines[J]. Rock and Soil Mechanics, 2008, 29(7): 1861-1864, 1876. (in Chinese))
    [4]
    马亚航. 隧道开挖引起的地层变形及其对地下管线的影响分析[D]. 长沙: 湖南大学, 2011.
    (MA Ya-hang.Effect of tunneling on ground movements and underground pipelines[D]. Changsha: Hunan University, 2011. (in Chinese))
    [5]
    KLAR A, MARSHALL A M, SOGA K, et al.Tunneling effects on jointed pipelines[J]. Canadian Geotechnical Journal, 2008, 45(1): 131-139.
    [6]
    魏纲, 黄文, 姜鑫. 地面出入式盾构开挖对邻近地下管线的影响分析[J]. 铁道科学与工程学报, 2017, 14(9): 1934-1941.
    (WEI Gang, HUANG Wen, JIANG Xin.Analysis of influence of ground penetrating shield tunnel excavation on adjacent underground pipeline[J]. Journal of Railway Science and Engineering, 2017, 14(9): 1934-1941. (in Chinese))
    [7]
    彭基敏, 张孟喜. 盾构法施工引起邻近地下管线位移分析[J]. 工业建筑, 2005, 35(9): 50-53.
    (PENG Ji-min, ZHANG Meng-xi.Analysis of the displacements of underground pipelines caused by shield construction[J]. Industrial Construction, 2005, 35(9): 50-53. (in Chinese))
    [8]
    吴波, 高波. 地铁区间隧道施工对近邻管线影响的三维数值模拟[J]. 岩石力学与工程学报, 2002, 21(增刊2): 2451-2456.
    (WU Bo, GAO Bo.3D numerical simulation on effect of tunnel construction on adjacent pipeline[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(S2): 2451-2456. (in Chinese))
    [9]
    魏纲, 魏新江, 裘新谷, 等. 过街隧道施工对地下管线影响的三维数值模拟[J]. 岩石力学与工程学报, 2009, 28(增刊1): 2853-2859.
    (WEI Gang, WEI Xin-jiang, QIU Xin-gu, et al.3D numerical simulation of effect of underground urban street-passage tunnel construction on adjacent pipeline[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 2853-2859. (in Chinese))
    [10]
    邵羽. 盾构双隧道施工对临近地埋管线的影响研究[D]. 南宁: 广西大学, 2017.
    (SHAO Yu.Mechanism behavior of existing buried pipeline due to twin shield tunneling[D]. Nanning: Guangxi University, 2017. (in Chinese))
    [11]
    马少坤, 邵羽, 刘莹, 等. 不同埋深盾构双隧道及开挖顺序对临近管线的影响研究[J]. 岩土力学, 2017, 38(9): 2487-2495.
    (MA Shao-kun, SHAO Yu, LIU Ying, et al.Effects of construction sequences of twin tunneling at different depths on the adjacent pipeline[J]. Rock and Soil Mechanics, 2017, 38(9): 2487-2495. (in Chinese))
    [12]
    王正兴, 缪林昌, 王冉冉, 等. 砂土中隧道施工对相邻垂直连续管线位移影响的模型试验研究[J]. 岩土力学, 2013, 34(增刊2): 143-149.
    (WANG Zheng-xing, MIAO Lin-chang, WANG Ran-ran, et al.Model test study of vertical buried continuous pipelines displacements affected by tunneling in sand[J]. Rock and Soil Mechanics, 2013, 34(S2): 143-149. (in Chinese))
    [13]
    朱叶艇, 张桓, 张子新, 等. 盾构隧道推进对邻近地下管线影响的物理模型试验研究[J]. 岩土力学, 2016, 37(增刊2): 151-160.
    (ZHU Ye-ting, ZHANG Huan, ZHANG Zi-xin, et al.Physical model test study of influence of advance of shield tunnel on adjacent underground pipelines[J]. Rock and Soil Mechanics, 2016, 37(S2): 151-160. (in Chinese))
    [14]
    王海涛, 金慧, 袁大军. 砂土地层隧道施工对埋地管道影响的模型试验研究[J]. 土木工程学报, 2017, 50(增刊2): 118-126.
    (WANG Hai-tao, JIN Hui, YUAN Da-jun.Model test study on influence of pipeline caused by tunnel construction in sand[J]. China Civil Engineering Journal, 2017, 50(S2): 118-126. (in Chinese))
    [15]
    黄晓康, 卢坤林, 朱大勇. 盾构施工对不同位置地下管线变形的影响模拟试验研究[J]. 岩土力学, 2017, 38(增刊1): 123-130.
    (HUANG Xiao-kang, LU Kun-lin, ZHU Da-yong.Simulation test study of deformations of pipelines located at different geometric positions arising from shield tunneling[J]. Rock and Soil Mechanics, 2017, 38(S1): 123-130. (in Chinese))
    [16]
    崔程虹. 不同断面类型盾构施工对临近地下管线沉降影响的研究[D]. 淮南: 安徽理工大学, 2018.
    (CUI Cheng-hong.Research on the influence of different sections shied tunnel construction on adjacent underground pipelines[D]. Huainan: Anhui University of Science and Technology, 2018. (in Chinese))
  • Cited by

    Periodical cited type(17)

    1. 丰土根,周坤,张箭,陈子昂,彭朋. 大截面矩形顶管施工对既有管线影响研究. 工程力学. 2024(05): 1-12 .
    2. 赵得乾麟,魏纲,梁禄钜,姜海波,项鹏飞,木志远. 砂土层中类矩形盾构施工对邻近既有隧道造成影响的模型试验研究. 隧道建设(中英文). 2024(05): 1000-1011 .
    3. 尹义豪. 大直径盾构隧道下穿地下管线研究分析及应用. 建筑安全. 2024(08): 33-37 .
    4. 魏纲,赵得乾麟. 类矩形盾构穿越既有隧道引起土体沉降的模型试验研究. 铁道科学与工程学报. 2023(01): 222-232 .
    5. 姜海斌. 基于正交试验的复合地层盾构隧道下穿邻近管线敏感性因素研究. 现代城市轨道交通. 2023(06): 53-60 .
    6. 黄大维,徐长节,罗文俊,姜浩,刘家璇,李庆. 土压平衡盾构施工模块化分步缩尺模型试验设计与应用. 交通运输工程学报. 2023(04): 248-257 .
    7. 刘平,王洪涛,刘泉声,徐辰宇,刘池,殷欣. 基于Hoek-Brown强度参数的地铁隧道下穿既有管廊塌落上限分析. 应用基础与工程科学学报. 2023(05): 1205-1218 .
    8. 周奇辉,张琼方,丁智,孙苗苗,黄鑫,林若涵. 基于2.5维有限元的类矩形隧道振动响应研究. 科技通报. 2023(11): 103-109 .
    9. 张治国,陈杰,朱正国,魏纲,吴钟腾,陆正. 基于Kerr地基模型的盾构下穿诱发既有非连续隧道纵向变形分析. 岩土工程学报. 2023(11): 2238-2247 . 本站查看
    10. 魏纲,赵得乾麟,齐永洁. 类矩形盾构隧道下穿引起既有隧道竖向位移计算方法研究. 隧道建设(中英文). 2022(06): 960-966 .
    11. 张志伟,李忠超,梁荣柱,于东东,梁东睿,王理想,吴文兵. 软土地层矩形顶管掘进引起地表隆沉变形分析. 岩土力学. 2022(S1): 419-430 .
    12. 王熠琛,张明聚,李鹏飞,冯武. 统计过程控制在邻近地铁施工管线监测分析中的应用. 建筑结构. 2022(S2): 2658-2662 .
    13. 陶思海. Peck公式在软土地区类矩形盾构隧道施工中的应用. 路基工程. 2021(02): 153-157 .
    14. 吴忠仕,贺祖浩,刘文,许超,孔茜. 大直径泥水盾构始发钢套筒的防扭施工技术——以孟加拉卡纳普里河水下隧道为例. 隧道建设(中英文). 2020(S1): 321-326 .
    15. 周浩,马保松,赵阳森,张鹏. 多因素下大断面矩形顶管施工对地层竖向变形影响研究. 隧道建设(中英文). 2020(09): 1324-1332 .
    16. 唐金云. 施工中地下管线施工技术的应用研究. 智能城市. 2019(15): 169-170 .
    17. 张治国,张洋彬,王志伟,方蕾,马少坤,师敏之,魏纲. 类矩形截面隧道开挖诱发邻近管线变形模型试验与数值模拟研究. 隧道与地下工程灾害防治. 2019(04): 85-96 .

    Other cited types(15)

Catalog

    Article views (294) PDF downloads (184) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return