• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHENG Gang, PAN Jun, CHENG Xue-song, BAI Ru-bing, DU Yi-ming, DIAO Yu. Passive control and active grouting control of horizontal deformation of tunnels induced neighboring excavation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1181-1190. DOI: 10.11779/CJGE201907001
Citation: ZHENG Gang, PAN Jun, CHENG Xue-song, BAI Ru-bing, DU Yi-ming, DIAO Yu. Passive control and active grouting control of horizontal deformation of tunnels induced neighboring excavation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1181-1190. DOI: 10.11779/CJGE201907001

Passive control and active grouting control of horizontal deformation of tunnels induced neighboring excavation

More Information
  • Received Date: July 31, 2018
  • Published Date: July 24, 2019
  • For safeguarding metro structures adjacent to excavation, much attention has been paid to passive control measures, such as strengthening support system of excavation and optimization of excavation scheme. The passive control measures are not timely and active to alleviate tunnel responses during the construction process of excavation, and increase the cost and construction period of excavation. Based on a large excavation adjacent to a metro line, the development of horizontal deformation of metro structures during the construction process is analyzed, and field tests and application of grouting to active control of the horizontal deformation of soils and of tunnels are conducted. Furthermore, several control measures are compared and evaluated through numerical simulation, and the optimization of grouting scheme is also studied. The engineering case and numerical results reveal the great limitation of passive control measures, such as staged construction, zoned construction and strengthening support system, and effectiveness and economical efficiency of timely grouting to actively control tunnel deformation. In terms of grouting scheme, the grouting scheme of “close, more grouting holes, small grout volume, from far to near” is superior to the scheme of “far, less grouting holes, large grout volume, from near to far” in the case of multiple rows of grouting holes. As the active grouting technology has the advantages of low cost, short construction period and timely controlling tunnel deformation, it is obviously superior to passive control measures such as zoned and staged construction when the condition is appropriate.
  • [1]
    BURFORD D.Heave of tunnels beneath the Shell Centre, London, 1959-1986[J]. Géotechnique, 1988, 38(1): 135-137.
    [2]
    CHANG C T, SUN C W, DUANN S W, et al.Response of a Taipei Rapid Transit System (TRTS) tunnel to adjacent excavation[J]. Tunnelling and Underground Space Technology, 2001, 16(3): 151-158.
    [3]
    郑刚, 朱合华, 刘新荣, 等. 基坑工程与地下工程安全及环境影响控制[J]. 土木工程学报, 2016, 49(6): 1-24.
    (ZHENG Gang, ZHU He-hua, LIU Xin-rong, et al.Control of safety of deep excavations and underground engineering and its impact on surrounding environment[J]. China Civil Engineering Journal, 2016, 49(6): 1-24. (in Chinese))
    [4]
    NG C W W, SHI J, MAŠÍN D, et al. Influence of sand density and retaining wall stiffness on three-dimensional responses of tunnel to basement excavation[J]. Canadian Geotechnical Journal, 2015, 52(11): 1811-1829.
    [5]
    SHI J W, ZHANG X, CHEN Y H, et al.Numerical parametric study of countermeasures to alleviate basement excavation effects on an existing tunnel[J]. Tunnelling and Underground Space Technology, 2018, 72: 145-153.
    [6]
    CHEN J J, ZHU Y F, LI M G, et al. Novel excavation and construction method of an underground highway tunnel above operating metro tunnels[J]. Journal of Aerospace Engineering, 2015, 28(6): A4014003-1-7.
    [7]
    LI M G, CHEN J J, WANG J H, et al.Comparative study of construction methods for deep excavations above shield tunnels[J]. Tunnelling and Underground Space Technology, 2018, 71: 329-339.
    [8]
    HU Z F, YUE Z Q, ZHOU J, et al.Design and construction of a deep excavation in soft soils adjacent to the Shanghai Metro tunnels[J]. Canadian Geotechnical Journal, 2003, 40(5): 933-948.
    [9]
    TAN Y, LI X, KANG Z J, et al. Zoned excavation of an oversized pit close to an existing metro line in stiff clay: case study[J]. Journal of Performance of Constructed Facilities, 2015, 29(6): 04014158-1-19.
    [10]
    LI M G, ZHANG Z J, CHEN J J, et al.Zoned and staged construction of an underground complex in Shanghai soft clay[J]. Tunnelling and Underground Space Technology, 2017, 67: 187-200.
    [11]
    HUANG X, SCHWEIGER H F, HUANG H W.Influence of deep excavations on nearby existing tunnels[J]. International Journal of Geomechanics, 2013, 13(2): 170-180.
    [12]
    CHEN R P, MENG F Y, LI Z C, et al.Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils[J]. Tunnelling and Underground Space Technology, 2016, 58: 224-235.
    [13]
    ZHENG G, WANG F J, DU Y M, et al.The efficiency of the ability of isolation piles to control the deformation of tunnels adjacent to excavations[J]. International Journal of Civil Engineering, 2018, 16(10B): 1475-1490.
    [14]
    HARRIS D I, MAIR R J, LOVE J P, et al.Observations of ground and structure movements for compensation grouting during tunnel construction at Waterloo station[J]. Géotechnique, 1994, 44(4): 691-713.
    [15]
    SOGA K, BOLTON M D, AU S K A, et al. Development of compensation grouting modelling and control system[C]// Geotechnical Aspects of Underground Construction in Soft Ground. Rotterdam, 2000: 425-430.
    [16]
    KOMIYA K, SOGA K, AKAGI H, et al.Soil consolidation associated with grouting during shield tunnelling in soft clayey ground[J]. Géotechnique, 2001, 51(10): 835-846.
    [17]
    AU S K A, SOGA K, JAFARI M R, et al. Factors affecting long-term efficiency of compensation grouting in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 254-262.
    [18]
    SCHWEIGER H F, KUMMERER C, OTTERBEIN R, et al.Numerical modelling of settlement compensation by means of fracture grouting[J]. Soils and Foundations, 2004, 44(1): 71-86.
    [19]
    SOGA K, AU S K A, JAFARI M R, et al. Laboratory investigation of multiple grout injections into clay[J]. Géotechnique, 2004, 54(2): 81-90.
    [20]
    NI J C, CHENG W C.Monitoring and modeling grout efficiency of lifting structure in soft clay[J]. International Journal of Geomechanics, 2010, 10(6): 223-229.
    [21]
    张冬梅, 邹伟彪, 闫静雅. 软土盾构隧道横向大变形侧向注浆控制机理研究[J]. 岩土工程学报, 2014, 36(12): 2203-2212.
    (ZHANG Dong-mei, ZOU Wei-biao, YAN Jing-ya.Effective control of large transverse deformation of shield tunnels using grouting in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2203-2212. (in Chinese)).
    [22]
    CHENG W C, SONG Z P, TIAN W, et al.Shield tunnel uplift and deformation characterisation: a case study from Zhengzhou metro[J]. Tunnelling and Underground Space Technology, 2018, 79: 83-95.
    [23]
    SCHANZ T, VERMEER P A, BONNIER P G.The hardening soil model: formulation and verification[M]// BRINKGREVE R B J. Beyond 2000 in Computational Geotechnics: 10 years of PLAXIS International. Rotterdam: A A Balkema Publishers, 1999: 281-296.
    [24]
    BRINKGREVE R B J, KUMARSWAMY S, SWOLFS W M, et al. PLAXIS 3D manual[M]. Delft: PLAXIS, 2017.
    [25]
    YE F, GOU C F, SUN H D, et al.Model test study on effective ratio of segment transverse bending rigidity of shield tunnel[J]. Tunnelling and Underground Space Technology, 2014, 41: 193-205.
    [26]
    LIAO S M, PENG F L, SHEN S L.Analysis of shearing effect on tunnel induced by load transfer along longitudinal direction[J]. Tunnelling and Underground Space Technology, 2008, 23(4): 421-430.
    [27]
    NICOLINI E, NOVA R.Modelling of a tunnel excavation in a non-cohesive soil improved with cement mix injections[J]. Computers and Geotechnics, 2000, 27(4): 249-272.
    [28]
    MASINI L, RAMPELLO S, SOGA K.An approach to evaluate the efficiency of compensation grouting[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 04014073.
    [29]
    FALK E.Soil improvement by injection of solid material with hydraulic energy[D]. Vienna: Vienna University of Technology, 1998.
  • Related Articles

    [1]HUANG Jianyou, YAN Yutao, DIAO Yu, ZHENG Gang, LI Kai, JIA Jianwei, LIU Yongchao. Horizontal deformation of piles controlled by capsule expansion technique[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 85-95. DOI: 10.11779/CJGE20230993
    [2]WEI Ran, ZHANG Liya, XIAO Zhirui, YAN Jun, WANG Bo. Deformation and control mechanism of MICP-treated expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 92-96. DOI: 10.11779/CJGE2023S10050
    [3]ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. DOI: 10.11779/CJGE202201001
    [4]ZHANG Dong-mei, ZOU Wei-biao, YAN Jing-ya. Effective control of large transverse deformation of shield tunnels using grouting in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2203-2212. DOI: 10.11779/CJGE201412007
    [5]WANG Shu-guang. Deformation control of excavation engineering with complicated surroundings[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 474-477.
    [6]LIU Huan-cun, LI Liang-jie, WANG Cheng-liang, WEI Hai-tao. Design and deformation control of excavation support project close to a subway station[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 654-658.
    [7]LIU Shu-ya, OUYANG-Rong. Deformation of Shenzhen subway aroused by deep excavations andits risk control technology[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 638-643.
    [8]LI Zhi-wei, HOU Wei-sheng, YE Ai-li, CHEN Ke-shuai, TANG Yong. Displacement control effect of passive zone improvement at excavation section of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 621-627.
    [9]SUN Jian-ping, SHAO Guang-biao, JIANG Zong-bao. Design and construction technology of displacement control in deep miscellaneous fill foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 576-580.
    [10]GAO Meng, GAO Guangyun, FENG Shijin, YU Zhisong. Control of deformation of operating subway station induced by adjacent deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 818-823.
  • Cited by

    Periodical cited type(66)

    1. 黄建友,闫宇涛,刁钰,郑刚,李凯,贾建伟,刘永超. 囊体扩张主动控制桩基水平变形机理分析. 岩土工程学报. 2025(01): 85-95 . 本站查看
    2. 孟善宝. 基坑开挖引发铁路路基沉降的主动控制方法研究. 铁道建筑技术. 2025(02): 209-213 .
    3. 王均山,赵林嵩,张宗俊,郑刚,程雪松. 注浆控制土体变形原位试验与隧道竖向变形数值模拟研究. 地基处理. 2024(01): 47-59 .
    4. 黄大维,赵梽錡,徐长节,罗文俊,耿大新,石钰锋. 侧部注浆对已建盾构隧道受荷变形影响试验研究. 岩土工程学报. 2024(03): 510-518 . 本站查看
    5. 王荣飞. 富水软弱围岩隧道全断面帷幕注浆变形机理及控制研究. 河南科技. 2024(02): 52-58 .
    6. 吴忠立. 异型深基坑开挖对既有地铁车站的影响研究. 工程技术研究. 2024(05): 28-31 .
    7. 王俊,高琨,冀大亨,刘佳杰. 城市建成区密贴既有线深大基坑施工周边环境变形控制. 市政技术. 2024(05): 104-114 .
    8. 黄大维,罗仲睿,罗文俊,朱碧堂,刘家璇,赵梽錡. 地层注浆附加土压力形成及影响因素单元体试验研究. 岩石力学与工程学报. 2024(S1): 3520-3529 .
    9. 邓旭,甄洁,林森斌,裴鸿斌,黄军华,李晨恺,高深,程雪松. 基坑开挖引起地铁结构隆起的堆载控制研究. 铁道科学与工程学报. 2024(06): 2417-2429 .
    10. 秦鹏飞,晋芳,毕琼媛,王莉. 考虑流固耦合效应的砂土注浆加固机理分析. 黄河科技学院学报. 2024(08): 59-66 .
    11. 黄大维,刘家璇,谭满生,邓翔浩,黄永亮,翁友华,陈升平. 盾构隧道底部注浆抬升模拟试验研究. 岩土力学. 2024(S1): 371-381 .
    12. 黄大维,刘家璇,徐长节,罗仲睿. 浆液扩散模式对地层附加土压力影响试验研究. 华中科技大学学报(自然科学版). 2024(10): 20-26 .
    13. 李骏杰,韩哲,张治国,倪寅,范彬华,师敏之. 软土基坑开挖对相邻建(构)筑物结构变形影响研究进展. 土木工程与管理学报. 2024(05): 41-50 .
    14. 姜晓冬. 某高铁隧道项目二次衬砌拱顶充填注浆施工技术研究. 运输经理世界. 2024(31): 106-108 .
    15. 孙超,张光伟,答武强,余祖峰. 临山条件下大直径盾构隧道抗浮控制技术. 隧道与地下工程灾害防治. 2024(04): 27-37 .
    16. 毛家骅,刘明高,陈仁东,张园,陆平,张晨阳. 基坑开挖及降水作用下盾构隧道结构响应离心模型试验设计研究. 土木工程学报. 2024(S1): 184-189 .
    17. 王如路,袁强,梁发云,王鲁杰. 道路填土引发软土地铁盾构隧道变形案例及整治技术. 岩土工程学报. 2023(01): 112-121 . 本站查看
    18. 刘德军,张杨,左建平,戴庆庆. 基于N-M曲线的盾构隧道正截面承载性能加固评价及演化规律. 中国矿业大学学报. 2023(01): 76-85 .
    19. 郭景琢,郑刚,赵林嵩,潘军,张宗俊,周强,程雪松. 多排孔注浆引起土体变形与孔压规律试验研究. 岩土力学. 2023(03): 896-907 .
    20. 罗嵩,陈思明,白伟,孙明祥,段小明. 近接运营线路超长深基坑分坑施工方案比选研究. 路基工程. 2023(02): 173-178 .
    21. 武昱欣,李爱春. 山区铁路技术接口安全管理系统韧性评价. 兰州交通大学学报. 2023(03): 7-14 .
    22. 刘增胜,王焕郎,詹源,龚建伍,李青,陈孝湘. 袖阀管近距离注浆对在运营盾构隧道的影响分析. 建筑结构. 2023(S1): 2965-2970 .
    23. 倪福兴,叶俊能,陆幸,刘干斌. 近接基坑施工对既有隧道气囊桩的保护效果研究. 宁波大学学报(理工版). 2023(05): 44-50 .
    24. 李明,李化明. 基于流固耦合的深基坑周边地表沉降界线分析. 水利与建筑工程学报. 2023(04): 80-88 .
    25. 冯非凡,魏纲,王哲,梁禄钜,张勇. 水平注浆对既有盾构隧道横向变形与内力的纠偏控制效果研究. 铁道科学与工程学报. 2023(08): 2987-2999 .
    26. 孔庆鑫,金鑫,毕华雄,孙苗苗. 补偿注浆对基坑旁侧隧道的位移控制研究. 低温建筑技术. 2023(08): 112-117 .
    27. 叶俊能,陆幸,叶荣华,倪福兴,刘干斌. 高压气囊桩对既有地铁隧道的安全保护试验研究. 土木工程学报. 2023(S2): 35-43 .
    28. 秦鹏飞. 非线性压密效应下砂土劈裂注浆机理研究. 工业建筑. 2023(12): 198-203+61 .
    29. 郑刚. 软土地区基坑工程变形控制方法及工程应用. 岩土工程学报. 2022(01): 1-36+201 . 本站查看
    30. 程雪松,高洁,潘军,白如冰,郑刚. 注浆水平纠偏的作用规律与影响因素. 土木与环境工程学报(中英文). 2022(05): 136-147 .
    31. 程康. 软土基坑卸荷对下卧既有隧道纵向变形影响研究综述. 水利与建筑工程学报. 2022(03): 95-101 .
    32. 王雅甜,杨春山,黄福杰. 紧邻既有结构的灌注桩施工力学行为研究. 南昌工程学院学报. 2022(03): 41-46 .
    33. 夏曾银,盛鲁腾,程雪松,潘军,郑刚,贾建伟,焦莹. 基坑引发隧道变形控制中注浆参数的敏感性分析研究. 建筑结构. 2022(S1): 2546-2553 .
    34. 何忠明,王盘盘,王利军,邱俊筠. 深基坑施工对临近地铁隧道变形影响及参数敏感性分析. 长安大学学报(自然科学版). 2022(04): 63-72 .
    35. 郭景琢,刘永超,张宗俊,郑刚,程雪松,潘军,赵林嵩. 天津地区基坑外既有隧道竖向变形机理及影响区研究. 水利水电技术(中英文). 2022(07): 139-153 .
    36. 赵帅,张东明,邵华,黄宏伟. 盾构隧道微扰动注浆对土体强度和衬砌横向收敛的影响. 同济大学学报(自然科学版). 2022(08): 1145-1153 .
    37. 魏纲,张书鸣,崔允亮,丁智. 地面堆载下盾构隧道不同加固方法的加固效果研究. 隧道建设(中英文). 2022(S1): 85-92 .
    38. 孙九春,许四法,王旭锋,王哲,王瑞,奚晓广. 袖阀管注浆对临近土体变形影响的试验研究. 浙江工业大学学报. 2022(05): 480-485 .
    39. 郑刚,苏奕铭,刁钰,黄建友,赵玉波,王岁军,陈昊. 基坑引起环境变形囊体扩张主动控制试验研究与工程应用. 土木工程学报. 2022(10): 80-92 .
    40. 夏曾银,潘军,盛鲁腾,程雪松,郑刚,冀叶涛,孟灵波. 注浆和隔离墙对基坑引发隧道变形的联合控制作用研究. 水利水电技术(中英文). 2022(09): 175-185 .
    41. 周子寒,何川,陈子全,马伟斌,汪波,邹文浩. 基于围岩变形主动控制理念的隧道支护时机虚拟支撑力法. 中国铁道科学. 2022(06): 76-88 .
    42. 黄盛锋,陈志波,谢永宁,郑金伙,邓煜晨. 紧邻隧道条件下基坑开挖变形破坏模式分析. 自然灾害学报. 2022(06): 181-190 .
    43. 林晓峰,郑荣国,郑刚,程雪松,潘军,盛鲁腾. 注浆主动控制隧道水平变形的机理及策略研究. 北京交通大学学报. 2022(06): 100-113 .
    44. 杜建明,房倩,刘翔,海路. 透明土物理模拟试验技术现状与趋势. 科学技术与工程. 2021(03): 852-861 .
    45. 丁智,张霄,梁发云,程丁捷,王刘祺. 软土基坑开挖对邻近既有隧道影响研究及展望. 中国公路学报. 2021(03): 50-70 .
    46. 文仁学. 抗拔桩+抗浮板加固体系在上跨盾构隧道基坑开挖中的应用分析. 路基工程. 2021(04): 188-193 .
    47. 李福海,李瑞,姜怡林,高浩,王奕彬,王佩勋. 隧道二次衬砌脱空带模注浆对衬砌结构受力影响的试验研究. 现代隧道技术. 2021(05): 147-158 .
    48. 孙九春,许四法,王旭锋,王瑞,王哲,奚晓广. 注浆对邻近土体水平位移影响的数值模拟. 地基处理. 2021(05): 397-401 .
    49. 董敏忠. 注浆纠偏隧道水平位移的数值模拟. 建筑科学与工程学报. 2021(06): 138-146 .
    50. 张磊. 基坑开挖对邻近隧道的影响分析. 交通世界. 2021(31): 9-10 .
    51. 林立华. 土岩复合地层中基坑施工对下卧既有隧道变形和裂缝影响的实测与分析. 中国市政工程. 2021(06): 79-83+130 .
    52. 赵宏伟. 公路桥梁隧道施工中灌浆法的应用. 运输经理世界. 2021(05): 101-102 .
    53. 韩结,陆航,朱丹丹. TRD工法在长江漫滩地区地铁隧道结构保护中的应用. 交通世界. 2020(07): 85-87 .
    54. 李召峰,高益凡,张健,齐延海,王衍升,刘超. 水溶性植物胶改性水泥–水玻璃封堵材料试验研究. 岩土工程学报. 2020(07): 1312-1321 . 本站查看
    55. 储灿清. 基于多元分析的地铁车站深基坑形变规律研究. 测绘. 2020(01): 35-40 .
    56. 张晓双,封超,韩云山,张军. Accident Analysis and Emergency Response Effect Research of the Deep Foundation Pit in Taiyuan Metro. Journal of Donghua University(English Edition). 2020(03): 199-206 .
    57. 岳云鹏,刘晓玉,张龙云,李志远,刘继强,郑先昌. 基坑分块开挖对下卧盾构隧道的变形影响分析. 铁道标准设计. 2020(09): 113-119 .
    58. 闫茂旺. 砂土地层不同开挖方法隧道围岩的竖向变形. 山东交通学院学报. 2020(04): 79-84 .
    59. 刘君伟. 管线基坑施工工序对地铁隧道结构变形影响研究. 市政技术. 2020(06): 101-106 .
    60. 王利军,邱俊筠,何忠明,罗欣,黄自力. 超大深基坑开挖对邻近地铁隧道变形影响. 长安大学学报(自然科学版). 2020(06): 77-85 .
    61. 张凯,相福斌. 呼和浩特轨道交通2号线某车站基坑开挖沉降监测分析. 现代隧道技术. 2020(S1): 884-889 .
    62. 付艳斌,陈湘生,吕桂阳,李云鹏. 基于小孔扩张弹塑性理论的注浆起始劈裂压力研究. 中国公路学报. 2020(12): 154-163 .
    63. 杨栋. 松散区盾构隧道注浆控制技术研究. 现代交通技术. 2020(06): 30-34 .
    64. 李杨秋,唐耿琛,刘建宁,李安兴,邱洪. 填土注浆加固对深基坑支挡结构与相邻隧道的作用效果案例分析. 隧道建设(中英文). 2020(S2): 58-66 .
    65. 包小华,章宇,徐长节,付艳斌,崔宏志,谢雄耀. 双线盾构隧道施工沉降影响因素分析. 重庆交通大学学报(自然科学版). 2020(03): 51-60 .
    66. 杨冰. 采用预制围护桩的深大基坑变形规律分析. 工程建设. 2019(11): 34-39 .

    Other cited types(28)

Catalog

    Article views (434) PDF downloads (481) Cited by(94)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return