• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Zhao-wei, LU Wen-bo, GAO Qi-dong, CHEN Ming, YAN Peng, WANG Gao-hui. Inversion of dynamic parameters of rock mass based on field blasting vibration[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 775-781. DOI: 10.11779/CJGE201904023
Citation: YANG Zhao-wei, LU Wen-bo, GAO Qi-dong, CHEN Ming, YAN Peng, WANG Gao-hui. Inversion of dynamic parameters of rock mass based on field blasting vibration[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 775-781. DOI: 10.11779/CJGE201904023

Inversion of dynamic parameters of rock mass based on field blasting vibration

More Information
  • Received Date: May 20, 2018
  • Published Date: April 24, 2019
  • How to obtain the dynamic parameters of rock mass quickly and precisely is a popular and difficult problem in geotechnical engineering, which plays a very important part in the engineering design or construction. Currently, scholars have developed many methods to obtain these parameters, such as in-situ testing method, empirical formula and so on. However, these methods need large investments and long construction period, etc., which cannot obtain the dynamic parameters precisely and quickly in the engineering scale. A new method for estimating the rock parameters based on field blasting vibration signals is proposed. By identifying the arrival times of P and S waves, the propagation velocities of P and S waves are calculated, and the parameters can be obtained. By analyzing the field blasting vibration signals in Fengning pumped-storage power station, the results demonstrate that the dynamic elastic modulus of the rocks inversed by the field blasting vibration signals is higher than its static one given by Beijing Engineering Corporation Limited, i.e. the ratio is about 2.2~2.9, and the inversed dynamic Poisson's ratio is lower than its static one, 0.9~0.975 times the static one. Therefore, the proposed method based on field blasting vibration provides a new and effective way for obtaining the dynamic parameters of rock mass.
  • [1]
    李洪涛, 杨兴国, 卢文波, 等. 基于等效峰值能量的建筑物爆破振动安全评价探讨[J]. 岩土工程学报, 2011, 33(5): 821-825.
    (LI Hong-tao, YANG Xing-guo, LU Wen-bo, et al.Safety assessment for structures under blasting vibration based on equivalent peak energy[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 821-825. (in Chinese))
    [2]
    余伟健, 杜少华, 王卫军, 等. 高应力软岩近距离巷道工程的掘进扰动与稳定性[J]. 岩土工程学报, 2014, 36(1): 57-64.
    (YU Wei-jian, DU Shao-hua, WANG Wei-jun, et al.Excavation disturbance and stability of short-distance roadway with high stress and soft rock mass[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 57-64. (in Chinese))
    [3]
    张占荣, 盛谦, 杨艳霜, 等. 基于现场试验的岩体变形模量尺寸效应研究[J]. 岩土力学, 2010, 31(9): 2875-2881.
    (ZHANG Zhan-rong, SHENG Qian, YANG Yan-shuang, et al.Study of size effect of rock mass deformation modulus based on in-situ test[J]. Rock and Soil Mechanics, 2010, 31(9): 2875-2881. (in Chinese))
    [4]
    朱维申, 何满潮. 复杂条件下围岩稳定性与岩体动态施工力学[M]. 北京:科学出版社, 1995.
    (ZHU Wei-shen, HE Man-chao.Stability and dynamic construction mechanics of surrounding rock under complex condition[M]. Beijing: Science Press, 1995. (in Chinese))
    [5]
    JUSTO J L, JUSTO E, AZANON J M, et al.The use of rock mass classification systems to estimate the modulus and strength of jointed rock[J]. Rock Mechanics and Rock Engineering, 2010, 43(3): 287-304.
    [6]
    HOEK E, BROWN E T.Underground excavations in rock[M]. England: Austin and Sons Ltd, 1980.
    [7]
    董学晟. 水工岩石力学[M]. 北京: 中国水利水电出版社, 2004.
    (DONG Xue-sheng.Water conservancy project rock mechanics[M]. Beijing: China Water Power Press, 2004. (in Chinese))
    [8]
    KAYABASI A, GOKCEOGLU C, ERCANOGLU M.Estimating the deformation modulus of rock masses: a comparative study[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(1): 55-63.
    [9]
    CHANG C, ZOBACK M D, KHAKSAR A.Empirical relations between rock strength and physical properties in sedimentary rocks[J]. Journal of Petroleum Science & Engineering, 2006, 51(3): 223-237.
    [10]
    ZHANG L Y, 2017. Evaluation of rock mass deformability using empirical methods - a review[J]. Underground Space, 2017, 2(1): 1-15.
    [11]
    李琼, 何建军, 陈杰. 地层压力条件下沁水盆地煤岩动静态弹性参数同步超声实验研究[J]. 地球物理学报, 2017, 60(7): 2897-2903.
    (LI Qiong, HE Jian-jun, CHEN Jie.Simultaneous ultrasonic experiment of dynamic and static elastic parameters of coal under formation pressure conditions in Qinshui Basin[J]. Chinese journal of geophysics, 2017, 60(7): 2897-2903. (in Chinese))
    [12]
    江进, 孙进忠, 乔艳红, 等. 太原晋阳西山大佛岩石动静力学参数的对比研究[J]. 岩石力学与工程学报, 2007, 26(增刊1): 3452-3460.
    (JIANG Jin, SUN Jin-zhong, QIAO Yan-hong, et al.2007. Comparison between static and dynamic parameters of grand buddha rockmass specimens in west Jinyang mountain in Taiyuan[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3452-3460. (in Chinese)).
    [13]
    MARTÍNEZ-MARTÍNEZ J, BENAVENTE D, GARCÍA- DEL-CURA M A. Comparison of the static and dynamic elastic modulus in carbonate rocks[J]. Bulletin of Engineering Geology & the Environment, 2012, 71(2): 263-268.
    [14]
    黄高峰. Hoek-Brown强度准则在岩体工程中的应用研究[D]. 杨凌: 西北农林科技大学, 2008.
    (HUANG Gao-feng.Application research of the Hoek-Brown strength criterion to rockmass engineering[D]. Yangling: Northwest Agriculture and Forestry University, 2008. (in Chinese))
    [15]
    HOEK E, MARINOS P, BENISSI M.Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses: the case of the Athens Schist Formation[J]. Bulletin of Engineering Geology & the Environment, 1998, 57(2): 151-160.
    [16]
    夏开宗, 陈从新, 刘秀敏, 等. 基于岩体波速的Hoek-Brown准则预测岩体力学参数方法及工程应用[J]. 岩石力学与工程学报, 2013, 32(7): 1458-1466.
    (XIA Kai-zong, CHEN Cong-xin, LIU Min-xiu, et al.Estimation of rock mass mechanical parameters based on ultrasonic velocity of rock mass and Hoek-Brown criterion and its application to engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1458-1466. (in Chinese))
    [17]
    BROTONS V, TOMÁS R, IVORRA S, et al. Improved correlation between the static and dynamic elastic modulus of different types of rocks[J]. Materials & Structures, 2015, 49(8): 1-17.
    [18]
    张培源, 张晓敏, 汪天庚. 岩石弹性模量与弹性波速的关系[J]. 岩石力学与工程学报, 2001, 20(6): 785-788.
    (ZHANG Pei-yuan, ZHANG Xiao-min, WANG Tian-geng.Relationship between elastic moduli and wave velocities in rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(6): 785-788. (in Chinese))
    [19]
    GAVIGLIO P.Longitudinal waves propagation in a limestone: the relationship between velocity and density[J]. Rock Mechanics & Rock Engineering, 1989, 22(4): 299-306.
    [20]
    朱广生, 桂志先, 熊新斌, 等. 密度与纵横波速度关系[J]. 地球物理学报, 1995(a01): 260-264.
    (ZHU Guang-sheng, GUI Zhi-xian, XIONG Xin-bin, et al.Relationships between density and P-wave, S-wave velocities[J]. Chinese Journal of Geophysics, 1995(a01): 260-264. (in Chinese))
    [21]
    GARDNER G H F, GARDNER L W, GREGORY A R. Formation velocity and density-the diagnostic basics for stratigraphic traps[J]. Geophysics, 1974, 39(6): 770-780.
    [22]
    BAER M, KRADOLFER U.An automatic phase picker for local and tele-seismic events[J]. Bulletin of the Seismological Society of America, 1987, 77(4): 1437-1445.
    [23]
    KANASEWICH E R.Time sequence analysis in geophysics[M]. 3rd ed. Alberta: The University of Alberta Press, 1981.
    [24]
    COPPENS F.First arrival picking on common offset traces collections for automatic estimation of static corrections[J]. Geophysical Prospecting, 1985, 33(8): 1212-1231.
  • Cited by

    Periodical cited type(21)

    1. 许建文,韦超俊,刘先林. 倾斜锚固桩提升含软弱夹层边坡稳定性的应用与设计优化. 山西建筑. 2025(03): 6-12 .
    2. 胡昌钧. 土体加固对倾斜桩围护结构受力变形影响研究. 海河水利. 2024(01): 79-83 .
    3. 康剑伟. 深基坑斜直交替钢管桩复合土钉墙数值模拟分析. 路基工程. 2024(01): 118-123 .
    4. 王淞,刘永超,张建新,胡军,刘岩. 深厚软土地区倾斜桩组合支护基坑稳定性研究. 地下空间与工程学报. 2024(02): 556-565+576 .
    5. 龚建伍,张森,谢亮. 排桩倾斜对双排桩支护结构性状影响分析. 建筑技术. 2024(09): 1044-1049 .
    6. 周德泉,朱沁,王创业,周毅. 基于应变楔模型的堆载下被动斜桩受力变形分析. 湖南大学学报(自然科学版). 2024(05): 46-55 .
    7. 郑刚,王玉萍,程雪松,余地华,黄晓程,李昕昊. 软土地区基坑前排倾斜双排桩支护现场试验及工作机理. 长江科学院院报. 2024(06): 98-105+113 .
    8. 汪宇峰. 前撑式注浆钢管桩技术在基坑工程中的应用研究. 价值工程. 2024(19): 146-149 .
    9. 俞伟. 型钢倾斜桩在软土深基坑工程中的应用研究. 福建建筑. 2024(08): 63-69 .
    10. 蔡连利. 堆载对明挖隧道基坑围护结构的影响. 路基工程. 2023(01): 228-233 .
    11. 周德泉,王创业,周毅,赵亚党. 被动倾斜桩应用研究与展望. 中外公路. 2023(02): 1-10 .
    12. 干飞,郑刚,曹腾,周海祚,姜志恒,李美霖,毕靖,李亚林. 直斜交替组合钢管桩支挡结构试验研究. 岩石力学与工程学报. 2023(05): 1175-1187 .
    13. 赵平,王少航,程雪芬. 基于非对称荷载作用下的基坑变形特性研究. 安徽科技学院学报. 2023(03): 102-108 .
    14. 汤胜,金泉,王文路,窦加进,王选仓. 低海拔地区大型结构基础深基坑位移监测研究. 工业建筑. 2023(S1): 411-415+428 .
    15. 周德志. CFG桩土复合地基条件下倾斜桩支护基坑工作特性研究. 吉林水利. 2023(07): 24-30 .
    16. 李杨. 群桩中斜直交替桩布置对群桩承载力的影响研究. 地下水. 2023(05): 331-333 .
    17. 胡力文,孙洪军,万悦,贾敏慧. 基坑悬臂式倾斜桩支护性能研究进展. 辽宁工业大学学报(自然科学版). 2023(05): 332-336 .
    18. 黄礼明. 某邻近既有建筑的异形软土基坑变形控制. 福建建筑. 2023(11): 84-88 .
    19. 唐扬,张慎,侯慧珍,夏红萤. 基坑斜直交替支护桩力学性能及影响因素研究. 地下空间与工程学报. 2023(S2): 778-784+803 .
    20. 郑刚. 软土地区基坑工程变形控制方法及工程应用. 岩土工程学报. 2022(01): 1-36+201 . 本站查看
    21. 李世忠,高立飞,温鹏,任永忠. 兰州某深基坑开挖支护数值模拟分析. 山西建筑. 2022(20): 74-78 .

    Other cited types(14)

Catalog

    Article views (279) PDF downloads (135) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return