• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Zhao-wei, LU Wen-bo, GAO Qi-dong, CHEN Ming, YAN Peng, WANG Gao-hui. Inversion of dynamic parameters of rock mass based on field blasting vibration[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 775-781. DOI: 10.11779/CJGE201904023
Citation: YANG Zhao-wei, LU Wen-bo, GAO Qi-dong, CHEN Ming, YAN Peng, WANG Gao-hui. Inversion of dynamic parameters of rock mass based on field blasting vibration[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 775-781. DOI: 10.11779/CJGE201904023

Inversion of dynamic parameters of rock mass based on field blasting vibration

More Information
  • Received Date: May 20, 2018
  • Published Date: April 24, 2019
  • How to obtain the dynamic parameters of rock mass quickly and precisely is a popular and difficult problem in geotechnical engineering, which plays a very important part in the engineering design or construction. Currently, scholars have developed many methods to obtain these parameters, such as in-situ testing method, empirical formula and so on. However, these methods need large investments and long construction period, etc., which cannot obtain the dynamic parameters precisely and quickly in the engineering scale. A new method for estimating the rock parameters based on field blasting vibration signals is proposed. By identifying the arrival times of P and S waves, the propagation velocities of P and S waves are calculated, and the parameters can be obtained. By analyzing the field blasting vibration signals in Fengning pumped-storage power station, the results demonstrate that the dynamic elastic modulus of the rocks inversed by the field blasting vibration signals is higher than its static one given by Beijing Engineering Corporation Limited, i.e. the ratio is about 2.2~2.9, and the inversed dynamic Poisson's ratio is lower than its static one, 0.9~0.975 times the static one. Therefore, the proposed method based on field blasting vibration provides a new and effective way for obtaining the dynamic parameters of rock mass.
  • [1]
    李洪涛, 杨兴国, 卢文波, 等. 基于等效峰值能量的建筑物爆破振动安全评价探讨[J]. 岩土工程学报, 2011, 33(5): 821-825.
    (LI Hong-tao, YANG Xing-guo, LU Wen-bo, et al.Safety assessment for structures under blasting vibration based on equivalent peak energy[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 821-825. (in Chinese))
    [2]
    余伟健, 杜少华, 王卫军, 等. 高应力软岩近距离巷道工程的掘进扰动与稳定性[J]. 岩土工程学报, 2014, 36(1): 57-64.
    (YU Wei-jian, DU Shao-hua, WANG Wei-jun, et al.Excavation disturbance and stability of short-distance roadway with high stress and soft rock mass[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 57-64. (in Chinese))
    [3]
    张占荣, 盛谦, 杨艳霜, 等. 基于现场试验的岩体变形模量尺寸效应研究[J]. 岩土力学, 2010, 31(9): 2875-2881.
    (ZHANG Zhan-rong, SHENG Qian, YANG Yan-shuang, et al.Study of size effect of rock mass deformation modulus based on in-situ test[J]. Rock and Soil Mechanics, 2010, 31(9): 2875-2881. (in Chinese))
    [4]
    朱维申, 何满潮. 复杂条件下围岩稳定性与岩体动态施工力学[M]. 北京:科学出版社, 1995.
    (ZHU Wei-shen, HE Man-chao.Stability and dynamic construction mechanics of surrounding rock under complex condition[M]. Beijing: Science Press, 1995. (in Chinese))
    [5]
    JUSTO J L, JUSTO E, AZANON J M, et al.The use of rock mass classification systems to estimate the modulus and strength of jointed rock[J]. Rock Mechanics and Rock Engineering, 2010, 43(3): 287-304.
    [6]
    HOEK E, BROWN E T.Underground excavations in rock[M]. England: Austin and Sons Ltd, 1980.
    [7]
    董学晟. 水工岩石力学[M]. 北京: 中国水利水电出版社, 2004.
    (DONG Xue-sheng.Water conservancy project rock mechanics[M]. Beijing: China Water Power Press, 2004. (in Chinese))
    [8]
    KAYABASI A, GOKCEOGLU C, ERCANOGLU M.Estimating the deformation modulus of rock masses: a comparative study[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(1): 55-63.
    [9]
    CHANG C, ZOBACK M D, KHAKSAR A.Empirical relations between rock strength and physical properties in sedimentary rocks[J]. Journal of Petroleum Science & Engineering, 2006, 51(3): 223-237.
    [10]
    ZHANG L Y, 2017. Evaluation of rock mass deformability using empirical methods - a review[J]. Underground Space, 2017, 2(1): 1-15.
    [11]
    李琼, 何建军, 陈杰. 地层压力条件下沁水盆地煤岩动静态弹性参数同步超声实验研究[J]. 地球物理学报, 2017, 60(7): 2897-2903.
    (LI Qiong, HE Jian-jun, CHEN Jie.Simultaneous ultrasonic experiment of dynamic and static elastic parameters of coal under formation pressure conditions in Qinshui Basin[J]. Chinese journal of geophysics, 2017, 60(7): 2897-2903. (in Chinese))
    [12]
    江进, 孙进忠, 乔艳红, 等. 太原晋阳西山大佛岩石动静力学参数的对比研究[J]. 岩石力学与工程学报, 2007, 26(增刊1): 3452-3460.
    (JIANG Jin, SUN Jin-zhong, QIAO Yan-hong, et al.2007. Comparison between static and dynamic parameters of grand buddha rockmass specimens in west Jinyang mountain in Taiyuan[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3452-3460. (in Chinese)).
    [13]
    MARTÍNEZ-MARTÍNEZ J, BENAVENTE D, GARCÍA- DEL-CURA M A. Comparison of the static and dynamic elastic modulus in carbonate rocks[J]. Bulletin of Engineering Geology & the Environment, 2012, 71(2): 263-268.
    [14]
    黄高峰. Hoek-Brown强度准则在岩体工程中的应用研究[D]. 杨凌: 西北农林科技大学, 2008.
    (HUANG Gao-feng.Application research of the Hoek-Brown strength criterion to rockmass engineering[D]. Yangling: Northwest Agriculture and Forestry University, 2008. (in Chinese))
    [15]
    HOEK E, MARINOS P, BENISSI M.Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses: the case of the Athens Schist Formation[J]. Bulletin of Engineering Geology & the Environment, 1998, 57(2): 151-160.
    [16]
    夏开宗, 陈从新, 刘秀敏, 等. 基于岩体波速的Hoek-Brown准则预测岩体力学参数方法及工程应用[J]. 岩石力学与工程学报, 2013, 32(7): 1458-1466.
    (XIA Kai-zong, CHEN Cong-xin, LIU Min-xiu, et al.Estimation of rock mass mechanical parameters based on ultrasonic velocity of rock mass and Hoek-Brown criterion and its application to engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1458-1466. (in Chinese))
    [17]
    BROTONS V, TOMÁS R, IVORRA S, et al. Improved correlation between the static and dynamic elastic modulus of different types of rocks[J]. Materials & Structures, 2015, 49(8): 1-17.
    [18]
    张培源, 张晓敏, 汪天庚. 岩石弹性模量与弹性波速的关系[J]. 岩石力学与工程学报, 2001, 20(6): 785-788.
    (ZHANG Pei-yuan, ZHANG Xiao-min, WANG Tian-geng.Relationship between elastic moduli and wave velocities in rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(6): 785-788. (in Chinese))
    [19]
    GAVIGLIO P.Longitudinal waves propagation in a limestone: the relationship between velocity and density[J]. Rock Mechanics & Rock Engineering, 1989, 22(4): 299-306.
    [20]
    朱广生, 桂志先, 熊新斌, 等. 密度与纵横波速度关系[J]. 地球物理学报, 1995(a01): 260-264.
    (ZHU Guang-sheng, GUI Zhi-xian, XIONG Xin-bin, et al.Relationships between density and P-wave, S-wave velocities[J]. Chinese Journal of Geophysics, 1995(a01): 260-264. (in Chinese))
    [21]
    GARDNER G H F, GARDNER L W, GREGORY A R. Formation velocity and density-the diagnostic basics for stratigraphic traps[J]. Geophysics, 1974, 39(6): 770-780.
    [22]
    BAER M, KRADOLFER U.An automatic phase picker for local and tele-seismic events[J]. Bulletin of the Seismological Society of America, 1987, 77(4): 1437-1445.
    [23]
    KANASEWICH E R.Time sequence analysis in geophysics[M]. 3rd ed. Alberta: The University of Alberta Press, 1981.
    [24]
    COPPENS F.First arrival picking on common offset traces collections for automatic estimation of static corrections[J]. Geophysical Prospecting, 1985, 33(8): 1212-1231.

Catalog

    Article views (277) PDF downloads (135) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return