• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DENG Shu-xin, ZHENG Yong-lai, FENG Li-po, ZHU Peng-yu, NI Yin. Application of design of experiments in microscopic parameter calibration for hard rocks of PFC3D model[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 655-664. DOI: 10.11779/CJGE201904008
Citation: DENG Shu-xin, ZHENG Yong-lai, FENG Li-po, ZHU Peng-yu, NI Yin. Application of design of experiments in microscopic parameter calibration for hard rocks of PFC3D model[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 655-664. DOI: 10.11779/CJGE201904008

Application of design of experiments in microscopic parameter calibration for hard rocks of PFC3D model

More Information
  • Received Date: March 22, 2018
  • Published Date: April 24, 2019
  • The design of experiments (DOE) is used to study the microscopic parameter calibration for hard rocks of PFC3D model. Firstly, the sensitivity of microscopic parameters to macroscopic responses is analyzed through the Plackett-Burman design. The linear relationship between microscopic parameters and macroscopic responses is established. Then, the interaction between microscopic parameters is investigated by using the response surface method (RSM) and the nonlinear relationship between microscopic parameters and macroscopic responses is obtained. Finally, the problem is transformed into a nonlinear multiobjective mathematical programming problem, and the FGOALATTAIN function in MATLAB software is utilized to solve the problem. It can be found that when using DOE to calibrate the microscopic parameters, the PFC3D model can well reflect the failure process of the rock under uniaxial and low confining compression conditions. However, the fitting results under high confining pressure is unsatisfactory. The method based on the PB design, response surface method and mathematical programming can reflect the sensitivity of the microscopic parameters, and the definite function expressions are obtained. At the same time, it can reflect more characteristics of rock mechanics by adding the constraints condition in the process of solving.
  • [1]
    徐小敏, 凌道盛, 陈云敏, 等. 基于线性接触模型的颗粒材料细-宏观弹性常数相关关系研究[J]. 岩土工程学报, 2010, 32(7): 991-998.
    (XU Xiao-min, LING Dao-sheng, CHEN Yun-min, et al.Correlation of microscopic and macroscopic elastic constants of granular materials based on linear contact model[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 991-998. (in Chinese))
    [2]
    尹小涛, 李春光, 王水林, 等. 岩土材料细观、宏观强度参数的关系研究[J]. 固体力学学报, 2011, 32(增刊1): 343-351.
    (YIN Xiao-tao, LI Chun-guang, WANG Shui-lin, et al.Study on relationship between micro-parameters and macro- parameters of rock and soil material[J]. Chinese Journal of Solid Mechanics, 2011, 32(S1): 343-351. (in Chinese))
    [3]
    刘新荣, 傅晏, 郑颖人, 等. 颗粒流细观强度参数与岩石断裂韧度之间的关系[J]. 岩石力学与工程学报, 2011, 30(10): 2084-2089.
    (LIU Xin-rong, FU Yan, ZHENG Ying-ren, et al.Relation between meso-parameters of particle flow code and fracture toughness of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2084-2089. (in Chinese))
    [4]
    周博, 汪华斌, 赵文锋, 等. 黏性材料细观与宏观力学参数相关性研究[J]. 岩土力学, 2012, 33(10): 3171-3175+3177-3178.(ZHOU Bo, WANG Hua-bin, ZHAO Wen-feng, et al. Analysis of relationship between particle mesoscopic and macroscopic mechanical parameters of cohesive materials[J]. Rock Soil Mechanics, 2012, 33(10): 3171-3178. (in Chinese))
    [5]
    赵国彦, 戴兵, 马驰. 平行黏结模型中细观参数对宏观特性影响研究[J]. 岩石力学与工程学报, 2012, 31(7): 1491-1498.
    (ZHAO Guo-yan, DAI Bing, MA Chi.Study of effects of microparameters on macroproperties for parallel bonded model[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1491-1498. (in Chinese))
    [6]
    丛宇, 王在泉, 郑颖人, 等. 基于颗粒流原理的岩石类材料细观参数的试验研究[J]. 岩土工程学报, 2015, 37(6): 1031-1040.
    (CONG Yu, WANG Zai-quan, ZHENG Ying-ren, et al.Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031-1040. (in Chinese))
    [7]
    POTYONDY D O, CUNDALL P A.A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
    [8]
    YOON J, STEPHANSSON O, DRESEN G.Application of design of experiments to process improvement of PFC model calibration in uniaxial compression simulation[C]// Proceedings of the 4th Asian Rock Mechanics Symposium (ARMS-4). Singapore, 2004.
    [9]
    YOON J.Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 871-889.
    [10]
    COETZEE C J, ELS D N J. Calibration of discrete element parameters and the modelling of silo discharge and bucket filling[J]. Computers and Electronics in Agriculture, 2009, 65(2): 198-212.
    [11]
    WANG Y, TONON F.Calibration of a discrete element model for intact rock up to its peak strength[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(5): 447-469.
    [12]
    王永菲, 王成国. 响应面法的理论与应用[J]. 中央民族大学学报: 自然科学版, 2005, 14(3): 236-240.
    (WANG Yong-fei, WANG Cheng-guo.The application of response surface methodology[J]. Journal of The Central University For Nationalities (Natural Science Edition), 2005, 14(3): 236-240. (in Chinese))
    [13]
    CHEN X, MIEDEMA S A, RHEE C V.Application of parallel bond method in rock compression simulation[C]// Proceedings of the 5th International Dredging Technology Development Conference of China. Tianjin, 2017.
    [14]
    PFC3D U M. Itasca consulting group[M]. Minneapolis: Inc, 2005.
    [15]
    尤明庆. 岩石试样的强度及变形破坏过程[M]. 北京: 地质出版社, 2000.
    (YOU Ming-qing.The strength and deformation process of rock specimen[M]. Beijing: Geological Publishing House, 2000. (in Chinese))
    [16]
    POTYONDY D O, CUNDALL P A.A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
    [17]
    EBERHARDT E, STEAD D, STIMPSON B.Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(3): 361-380.
    [18]
    EBERHARDT E.Brittle rock fracture and progressive damage in uniaxial compression[D]. Saskatoon: University of Saskatchewan, 1998.
    [19]
    YOON K.Deformation and fracturing of rock by acoustic emission measurement and bonded-particle model analysis[D]. Seoul: School of Civil, Urban and Geosystem Engineering, Seoul National University, 2002.
    [20]
    PLACKETT R L, BURMAN J P.The design of optimum multifactorial experiments[J]. Biometrika, 1946, 33(4): 305-325.
    [21]
    VAN MIER J G. Microstructural effects on fracture scaling in concrete, rock and ice[C]// IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics. Springer, 2001.
    [22]
    VAN MIER J G. Fracture processes of concrete[M]. Florida: CRC Press, 1996.
    [23]
    VAN VLIET M R A. Size effect in tensile fracture of concrete and rock[M]. Delft: Delft University of Technology, 2000.
    [24]
    刘振学, 黄仁和, 田爱民. 实验设计与数据处理[M]. 北京: 化学工业出版社, 2005.
    (LIU Zhen-xue, HUANG Ren-he, TIAN Ai-min.Experimental design and data processing[M]. Beijing: Chemical Industry Press, 2005. (in Chinese))
    [25]
    徐向宏, 何明珠. 试验设计与Design-Expert, SPSS 应用[M]. 北京: 科学出版社, 2010.
    (XU Xiang-hong, HE Ming-zhu.Experimental design and design-expert, SPSS application[M]. Beijing: Science Press, 2010. (in Chinese))
    [26]
    傅珏生, 张健, 王振羽, 等. 实验设计与分析[M]. 北京: 人民邮电出版社, 2009.
    (FU Yu-sheng, ZHANG Jian, WANG Zhen-yu, et al.Experimental design and analysis[M]. Beijing: People's Posts and Telecommunications Press, 2009. (in Chinese))
    [27]
    AL-SHAYEA N, KHAN K, ABDULJAUWAD S.Effects of confining pressure and temperature on mixed-mode (I-II) fracture toughness of a limestone rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 629-643.
    [28]
    RAO Q, SUN Z, STEPHANSSON O, et al.Shear fracture (Mode II) of brittle rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(3): 355-375.
    [29]
    BACKERS T.Fracture toughness determination and micromechanics of rock under mode I and mode II loading[D]. Potsdam: Universität Potsdam, 2005.
    [30]
    陈亮, 刘建锋, 王春萍, 等. 北山深部花岗岩弹塑性损伤模型研究[J]. 岩石力学与工程学报, 2013, 32(2): 289-298.
    (CHEN Liang, LIU Jian-feng, WANG Chun-ping.Elastoplastic damage model of Beishan deep granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 289-298. (in Chinese))
    [31]
    杨圣奇, 苏承东, 徐卫亚. 大理岩常规三轴压缩下强度和变形特性的试验研究[J]. 岩土力学, 2005, 26(3): 475-478.
    (YANG Sheng-qi, SU Cheng-dong, XU Wei-ya.Experimental investigation on strength and deformation properties of marble under conventional triaxial compression[J]. Rock Soil Mechanics, 2005, 26(3): 475-478. (in Chinese))
  • Related Articles

    [1]The Calibration Method for Microscopic Parameters in the Particle Flow Code Model of Rock-like Materials: A Semi-Analytical Lookup Table Approach[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20231229
    [2]Experimental Investigation of Rheological Behavior and the Viscous-Inertial Boundary in Dense Solid-Liquid Two-Phase Granular Flows[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240600
    [3]WANG Changhong, WU Zhaoxin, WANG Kun, TANG Daofei, MA Chengtao. Stochastic mechanics-based Bayesian method for calibrating geotechnical parameters of Shanghai deep soft clay using CPTU data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 75-84. DOI: 10.11779/CJGE20211494
    [4]WANG Jin-wei, CHI Shi-chun, SHAO Xiao-quan, ZHAO Fei-xiang. Application of orthogonal-contour method in calibration of microscopic parameters of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1867-1875. DOI: 10.11779/CJGE202010012
    [5]HU Bo, YANG Sheng-qi, XU Peng, TIAN Wen-ling. Time-scale effect of the creep model parameters and particle flow simulation of sandstone with a single crack[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 864-873. DOI: 10.11779/CJGE201905009
    [6]RUI Rui, WU Duan-zheng, HU Gang, XU Lu-chang, XIA Yuan-you. Calibration tests on diaphragm-type pressure cells[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 837-845. DOI: 10.11779/CJGE201605009
    [7]CONG Yu, WANG Zai-quan, ZHENG Ying-ren, FENG Xia-ting. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031-1040. DOI: 10.11779/CJGE201506009
    [8]CHEN Ya-dong, YU Yan, SHE Yue-xin. Method for determining mesoscopic parameters of sand in three-dimensional particle flow code numerical modeling[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 88-93.
    [9]LIU Hongshuai. Calibrating method for seismic response spectra based on niche genetic algorithm[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 975-979.
    [10]LUO Yong, GONG Xiaonan, LIAN Feng. Simulation of mechanical behaviors of granular materials by three-dimensional discrete element method based on particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 292-297.
  • Cited by

    Periodical cited type(42)

    1. 谭鑫,胡跃刚,尹心,曹文贵. 颗粒离散元岩石模型的宏细观抗拉强度关联. 力学学报. 2024(05): 1411-1425 .
    2. 王悠,刘晓辉,胡安奎,李泓颖,邱薛. 深埋大理岩三轴压缩渐进破坏裂纹扩展特征. 工程科学与技术. 2024(03): 21-31 .
    3. 张慧梅,马志敏,陈世官,王赋宇. 正交-响应面法在PBM细观参数标定中的应用. 水资源与水工程学报. 2024(02): 183-191 .
    4. 李搏凯,于贵,李星. 基于BP算法的岩石细观参数确定方法. 河南科技. 2024(10): 55-59 .
    5. 温晨,黄敏,邱贤阳,黄帅. 基于SVR的PFC微观参数辅助标定方法研究. 黄金科学技术. 2024(04): 675-684 .
    6. 肖福坤,谢锴,顾缘,刘刚,郝传波. 考虑相态的垮落体材料细观参数标定方法研究——以平行黏结模型为例. 岩土力学. 2024(S1): 13-24 .
    7. 唐红梅,宋刚,周福川,杨健. 基于颗粒流模型的灰岩材料宏、细观参数的试验研究——以重庆市南川区甑子岩危岩为例. 重庆师范大学学报(自然科学版). 2024(04): 50-60 .
    8. 姜玥,邹文栋. 基于PFC~(3D)的空心圆柱灰砂岩宏细观参数相关性研究. 煤炭科学技术. 2024(10): 78-89 .
    9. 徐超华,张搏,秦晓辉,周春霞,韦家刚. 基于PB+CCD设计法在PFC~(3D)数值模型细观参数标定. 科学技术与工程. 2024(31): 13512-13520 .
    10. 王昊,陈俊智,冯豪天. 含钙质胶结结构面岩石的力学特性与破坏特征研究. 工程地质学报. 2024(06): 2120-2129 .
    11. 朱昌星,赵伟浩,刘旭. 相似材料煤样单轴压缩声发射试验及数值模拟研究. 矿业研究与开发. 2023(02): 133-137 .
    12. 付旭,侯定贵,李茜,王林台,刘晓立. 软土蠕变颗粒流宏细观参数特征及标定方法. 土工基础. 2023(03): 501-505 .
    13. 刘国磊,王泽东,崔嵛,马秋峰,颜磊,韩玉忠. 深部煤巷围岩三向应力差异梯度致冲机理. 煤炭学报. 2023(05): 2106-2122 .
    14. 黄冬梅,朱盈盈,乔书昱,邢大千,王新照. 含孔洞-双裂隙红砂岩宏细观损伤特征数值试验研究. 山东科技大学学报(自然科学版). 2023(04): 32-42 .
    15. 任俊卿,肖明,刘国庆. 基于改进BP算法的岩石宏细观参数轻量化分析方法. 湖南大学学报(自然科学版). 2023(09): 207-218 .
    16. 宋勇军,孙银伟,李晨婧,杨慧敏,张磊涛,谢丽君. 基于离散元法模拟的冻融砂岩细观破裂演化特征研究. 岩土力学. 2023(12): 3602-3616 .
    17. 谢文杰,胡坤,王若瑜,周枳旭. 基于正交试验拟合的岩石细观参数标定. 地下空间与工程学报. 2023(S2): 593-601 .
    18. 荣浩宇,李桂臣,梁东旭,许嘉徽,胡亚桥. 应力路径影响下高应力岩石力学特性颗粒流模拟. 采矿与安全工程学报. 2022(01): 163-173 .
    19. 郭润兰,范雅琼,王广书,史方青,黄华. 基于PFC~(3D)的机床床身用树脂矿物复合材料损伤性能细观研究. 复合材料学报. 2022(02): 834-844 .
    20. 陈军涛,李昊,褚衍玉,张毅,唐道增,朱君,李文昕,王开宇. 刚度差异对岩石破裂影响的颗粒流模拟研究. 山东科技大学学报(自然科学版). 2022(02): 51-59 .
    21. 王小明,史文兵,熊绍真,廖德武,吴正超. 基于微观矿物含量的灰岩细观参数标定研究. 地下空间与工程学报. 2022(02): 428-437 .
    22. 董建鹏,李辉. 黄土颗粒流宏细观对应关系与参数标定方法研究. 水利水电技术(中英文). 2022(04): 180-191 .
    23. 郝保钦,张昌锁,王晨龙,任超. 岩石PFC~(2D)模型细观参数确定方法研究. 煤炭科学技术. 2022(04): 132-141 .
    24. 雷建俊,魏良针,林天干,夏念兴,刘秀娟,吴则祥. ITZ强度对混凝土裂隙扩展影响的DEM模拟研究. 人民长江. 2022(06): 217-221+227 .
    25. 李皋,舒淋,简旭,李泽,王智辉. 基于不规则颗粒的砾岩力学性能数值模拟研究. 科学技术与工程. 2022(20): 8660-8665 .
    26. 冯豪天,陈俊智,任春芳,马毓婷,张梦原. 数值试验中胶结结构面参数标定方法的研究. 地下空间与工程学报. 2022(06): 1824-1833 .
    27. 潘红宇,王康,张天军,秦斌峰,张志祥. CO_2气爆含控制孔煤层裂隙演化颗粒流模拟. 西安科技大学学报. 2021(02): 230-236 .
    28. 张杰,席迅,郭奇峰,吴星辉. 含预制裂隙花岗岩破坏的细观多相颗粒流模拟. 华中科技大学学报(自然科学版). 2021(04): 79-85 .
    29. 张杰,郭奇峰,蔡美峰,张英,汪炳锋,吴星辉. 循环扰动荷载作用下花岗岩中裂隙萌生扩展过程的颗粒流模拟. 工程科学学报. 2021(05): 636-646 .
    30. 史培行,陈玉红. 基于智能激光投影的空间布局标定系统设计. 激光杂志. 2021(05): 192-195 .
    31. 李壮,杨志全,朱颖彦,雨德聪. 溜石坡崩塌体运动过程与防治措施研究. 中国安全生产科学技术. 2021(06): 173-179 .
    32. 成晨,林杭. 基于岩石拉压宏观力学响应的平板模型微观参数匹配分析. 铁道科学与工程学报. 2021(11): 2916-2923 .
    33. 冯康武. 突出煤相似材料单轴压缩的PFC~(2D)模型细观参数标定研究. 煤矿安全. 2020(04): 5-9 .
    34. 朱丛薇. 含平行裂隙白砂岩的三轴压缩数值模拟研究. 中国水运(下半月). 2020(03): 61-63 .
    35. 程升,朱超祁,单红仙,刘晓磊,贾永刚. 基于离散元的南海软黏土剪切变形模拟. 科学技术与工程. 2020(09): 3707-3714 .
    36. 孙闯,敖云鹤,张家鸣,王帅. 花岗岩细观破裂特征及宏观尺度效应的颗粒流研究. 岩土工程学报. 2020(09): 1687-1695 . 本站查看
    37. 王晋伟,迟世春,邵晓泉,赵飞翔. 正交–等值线法在堆石料细观参数标定中的应用. 岩土工程学报. 2020(10): 1867-1875 . 本站查看
    38. 王向辉,刘佳洋. 网位仪用于浮标位置检测研究. 中国水运. 2020(06): 50-51 .
    39. 李玮,孟凡海,凌鑫,李思琪,陈子贺. 基于离散元的岩石单轴压缩实验模拟及断裂特性分析. 石油化工高等学校学报. 2019(04): 33-38 .
    40. 叶功勤,曹函,高强,张政,王天一. 颗粒配比对岩石力学特征影响的数值模拟研究. 地质力学学报. 2019(06): 1129-1137 .
    41. 孙浩程,陈有亮,王苏然,李玉成,房媛,朱丛薇. 含尖端相交裂隙岩石的破裂特征. 工业建筑. 2019(12): 119-125+137 .
    42. 孙浩程,陈有亮,王苏然,李玉成,房媛,朱丛薇. 含尖端相交裂隙岩石的破裂特征. 工业建筑. 2019(12): 119-125+137 .

    Other cited types(55)

Catalog

    Article views (518) PDF downloads (302) Cited by(97)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return