• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Sheng, ZHONG Chun-xin, WANG Jing, HE Shun-bin. Experimental study on filling standard of high rockfill dams with soil core[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 561-566. DOI: 10.11779/CJGE201903019
Citation: ZHU Sheng, ZHONG Chun-xin, WANG Jing, HE Shun-bin. Experimental study on filling standard of high rockfill dams with soil core[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 561-566. DOI: 10.11779/CJGE201903019

Experimental study on filling standard of high rockfill dams with soil core

More Information
  • Received Date: October 22, 2017
  • Published Date: March 24, 2019
  • The monitoring data of high ECRDs have shown that the deformation coordination in dam material zones does not meet the design goal, which is related to the degree of matching in the current specifications of filling for the filtration zone, transition zone and rockfill zone. Based on the fractal theory, the relative density tests on dam shell materials are carried out, and the relative density values are obtained. The filling criteria for the dam shell material zone are discussed. The results show that: (1) Due to its superior gradation and excellent compaction characteristics, the site average porosity rate of the rockfill is 19% and is lower than the design value 21%, but its relative density is only 0.65. (2) The relative densities in the anti-filter zone No. 2, transition zone and rockfill zone are 0.96, 0.75 and 0.65, respectively, and their relative difference may be the main reason for the deformation coordination without achieving the design goal. (3) The compaction function matching technique of indoor and field relative density tests can solve the problem that the relative density of the cushion materials or the cushion materials of the face dam is greater than 1.0. (4) The deformation control of high rockfill dams needs to consider the effect of gradation. The filling design should adopt the double control indices of porosity rate and relative density. The conclusions may provide a reference for the design and construction of high rockfill dams.
  • [1]
    马洪琪. 中国坝工技术的发展与创新.水力发电学报[J]. 2014, 33(6): 1-10.
    (MA Hong-qi.Development and innovation of dam construction technology in China[J]. Journal of Hydroelectric Engineering, 2014, 33(6): 1-10. (in Chinese))
    [2]
    郦能惠. 高混凝土面板堆石坝设计新理念[J].中国工程科学, 2011, 13(3): 12-18.
    (LI Neng-hui.New concept of design for high concrete face rockfill dams[J]. Engineering Sciences, 2011, 13(3): 12-18. (in Chinese))
    [3]
    DLT5395—2007碾压式土石坝设计规范[S]. 2007.
    (DLT5395—2007 Design code for roller compacted earth-rock dam[S]. 2007. (in Chinese))
    [4]
    DLT 5016—2011混凝土面板堆石坝设计规范[S]. 2011.
    (DLT 5016—2011 Design code for concrete face rockfill dams[S]. 2011. (in Chinese))
    [5]
    SOWERS GEORGE F, DAVIE J, MANSOER M N.Jatiluhur dam: problems and rehabilitation[J]. Geotechnical Special Publication, 1993, 35: 17-34.
    [6]
    UNAL B, EREN M, YALCIN M G.Investigation of eakage at Ataturk dam and hydroelectric power plant by means of hydrometric measurements[J]. Engineering Geology, 2007, 93(1/2): 45-63.
    [7]
    KALKAN Y, POTTS L V, BILGI S.Assessment of vertical deformation of the Atatürk dam using geodetic observations[J]. Journal of Surveying Engineering, 2016, 142(2): 1-14.
    [8]
    韩朝军, 朱晟. 土质防渗土石坝坝顶裂缝开裂机理与成因分析[J]. 中国农村水利水电, 2013(8): 116-120.
    (HAN Chao-jun, ZHU Sheng.Cracking mechanism and cause analysis of cracks in earth dam foundation[J]. China Rural Water and Hydropower, 2013(8): 116-120. (in Chinese))
    [9]
    MARENGO H.Case study: dam safety during construction, lessons of the overtopping diversion works at Aguamilpa dam[J]. Journal of Hydraulic Engineering, 2006, 132(11): 1121-1127.
    [10]
    关志诚. 紫坪铺高面板坝“5.12”震害修复处理[J]. 中国水利, 2008, 20: 71-76.
    (GUAN Zhi-cheng.Repair of high face rock-fill dam after "May 12" Earthquake[J]. China Water Resources, 2008, 20: 71-76. (in Chinese))
    [11]
    邢林生, 朱锦杰, 赵晓宇. 天生桥一级大坝面板挤压破损分析[J]. 水力发电学报. 2008, 27(5): 59-63.
    (XING Lin-sheng, ZHU Jin-jie, ZHAO Xiao-yu.Analysis of squeezing damage of slabs on Tianshengqiao 1st stage dam[J]. Journal of Hydroelectric Engineering, 2008, 27(5): 59-63. (in Chinese))
    [12]
    中国电建昆明院糯扎渡安全监管中心. 糯扎渡水电站心墙堆石坝安全监测报告[R]. 昆明: 中国电建昆明院糯扎渡安全监管中心, 2015.
    (Nuozhadu Safety Supervision Center of China Electric Construction Group Kunming Survey and Design Research Institute Co., Ltd. Safety monitoring report of core wall rockfill dam of Nuozhadu Hydropower Station[R]. Kunming: Nuozhadu Safety Supervision Center of China Electric Construction Group Kunming Survey and Design Research Institute Co., Ltd. 2015. (in Chinese))
    [13]
    雷红军, 刘兴宁, 冯业林. 糯扎渡大坝坝料现场压实特性及心墙安全性研究[J]. 大坝与安全, 2014(5): 26-31.
    (LEI Hong-jun, LIU Xing-ning, FENG Ye-lin.Research on field compaction characteristic of Nuozadu dam materials and safety of core wall[J]. Dam and Safety, 2014(5): 26-31. (in Chinese))
    [14]
    四川大唐国际甘孜公司安全监测中心. 长河坝水电站安全监测报告[R]. 成都: 四川大唐国际甘孜公司安全监测中心, 2016.
    (SiChuan Datang International Ganzi Company Safety Monitoring Center. Changheba hydropower station safety monitoring report[R]. Chengdu: SiChuan Datang International Ganzi Company Safety Monitoring Center, 2016. (in Chinese))
    [15]
    四川大唐国际甘孜公司中心实验室. 长河坝水电站2015年度质量检测分析报告[R]. 成都: 四川大唐国际甘孜公司中心实验室, 2015.
    (SiChuan Datang Inter- national Ganzi Company Central Laboratory. 2015 quality inspection analysis report[R]. Chengdu: SiChuan Datang Inter- national Ganzi Company Central Laboratory, 2015. (in Chinese))
    [16]
    NBT 35016—2013土石筑坝材料碾压试验规程[S]. 2013.
    (NBT 35016—2013 Earth and rock dam material rolling test procedure[S]. 2013. (in Chinese))
    [17]
    朱晟. 粗粒筑坝材料现场压实质量的控制标准研究[J]. 水力发电, 2011, 37(12): 22-26.
    (ZHU Sheng.Study on on-site compaction quality control standard of coarse-grained materials[J]. Hydroelectric Power, 2011, 37(12): 22-26. (in Chinese))
    [18]
    MARSAL R J.Large-scale of rockfill material[J]. Journal of the Soil Mechanics and Foundation Division, ASCE, 1967. 93(2): 27-43.
    [19]
    DLT5356—2006水电水利工程粗粒土试验规程[S]. 2006.
    (DLT5356—2006 Test code for coarse grained soil in hydropower and water conservancy projects[S]. 2006. (in Chinese))
    [20]
    朱晟. 一种确定粗粒料室内缩尺试验相对密度制样标准的方法与试验装置[P]. 中国专利:ZL 20151067446.8, 2017-09-29.
    (ZHU Sheng. Method and test device for determining relative density sample preparation standard for coarse-grained indoor scale test[P]. China Patent: ZL 20151067446.8, 2017-09-29. (in Chinese))
    [21]
    朱晟, 钟春欣, 郑希镭, 等. 堆石体的填筑标准与级配优化研究[J]. 岩土工程学报, 2018, 40(1): 108-115.
    (ZHU Sheng, ZHONG Chun-xin, ZHENG Xi-lei, et al.Filling standards and gradation optimization of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 108-115. (in Chinese))
    [22]
    ASTM—D4253—2016使用振动台测定土壤最大指数密度和单位重量的试验方法[S]. 2016.
    (ASTM—D4253—2016 Standard test methods for maximum index density and unit weight of soils using a vibratory table[S]. 2016. (in Chinese))
    [23]
    朱晟, 邓石德, 宁志远. 基于分形理论的堆石料级配设计方法[J]. 岩土工程学报, 2017, 39(6): 1151-1155.
    (ZHU Sheng, DENG Shi-de, NING Zhi-yuan, et al.Gradation design method of rockfill materials based on the fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1151-1155. (in Chinese))
  • Related Articles

    [1]ZHU Sheng, YE Hua-yang, XU Jin, FENG Shu-rong. Research and application of relative density test method for large coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1087-1095. DOI: 10.11779/CJGE202206013
    [2]GUO Wan-li, CAI Zheng-yin, WANG Yi, HUANG Ying-hao, ZHANG Chen. Influences of height of leakage point on uncoordinated deformation of heightening canals in cold areas[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 100-105. DOI: 10.11779/CJGE2020S2018
    [3]ZHU Sheng. Study and application of control indices for filling quality of high concrete face rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 610-615. DOI: 10.11779/CJGE202004002
    [4]XU Wei-wei, SHI Bei-xiao, CHEN Sheng-shui, LING Hua. Effects of porosity on strength and deformation of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 47-52. DOI: 10.11779/CJGE2018S2010
    [5]ZHU Sheng, ZHONG Chun-xin, ZHENG Xi-lei, GAO Zhuang-pin, ZHAN Zhen-gang. Filling standards and gradation optimization of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 108-115. DOI: 10.11779/CJGE201801010
    [6]LI Neng-hui, WANG Jun-li, MI Zhan-kuan, LI Deng-hua. Connotation of deformation safety of high concrete face rockfill dams and its application[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 193-201.
    [7]FENG Shen-duo, JIANG Xiao-guang, YANG Zhi-yin, ZHANG Jun, ZHUO Zhi-fei. Application and deformation compatibility of combined support of pile (wall)-bracing-anchor[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 456-460.
    [8]WEN Song-lin, REN Jia-li. Numerical simulation of non-conforming deformation feature between pile foundation and canal slope[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 178-183.
    [9]LIU Gang, ZHAO Jian, SONG Hongwei, LI Yuanhai. Physical modelling of effect of joint density on deformation and failure of surrounding rocks[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1737-1741.
    [10]WANG Wenbin, YANG Min. Elasto-plastic analysis for vertical pile based on extended compatibility of deformation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1442-1446.
  • Cited by

    Periodical cited type(22)

    1. 喻天龙,张军,姜海波. 换填厚度对湿陷性黄土输水渠道稳定性的影响. 水利规划与设计. 2025(02): 139-143 .
    2. 韩兴博,陈子明,叶飞,梁晓明,冯浩岚,夏天晗. 黄土盾构隧道开挖围岩扰动特性模型试验研究. 岩土工程学报. 2024(05): 968-977 . 本站查看
    3. 邓博团,申超凡,郑谢缙,付一帆. 黄土地基不均匀沉降对现浇管廊影响的试验研究. 西安建筑科技大学学报(自然科学版). 2024(02): 212-219 .
    4. 潘红伟,吴友川,段宇昕,张玉伟,何十美. 地铁隧道基底湿陷性黄土地层处置方案优化分析. 城市轨道交通研究. 2024(07): 261-265+274 .
    5. 辛延甫,郭鑫,张耀庭,郝敏,杜耀辉,张文轩. 大渗透黄土地层公路隧道受力变形分析. 公路. 2024(09): 434-442 .
    6. 刘德仁,安政山,徐硕昌,王旭,张转军,金芯,张严. 靖远地区大厚度黄土地基浸水湿陷过程及土中竖向应力特征试验研究. 岩土力学. 2023(01): 268-278 .
    7. 邱军领,秦祎文,赖金星,王强,唐琨杰. 突发高压渗流作用下黄土地铁隧道水压阶跃效应分析. 岩土工程学报. 2023(04): 758-767 . 本站查看
    8. 徐硕昌,刘德仁,王旭,安政山,张转军,金芯. 重塑非饱和黄土浸水入渗规律的模型试验研究. 水利水运工程学报. 2023(01): 140-148 .
    9. 马俊尧. 银昆高速公路湿陷性黄土地基水泥土挤密桩处理试验研究. 铁道建筑技术. 2022(01): 143-147 .
    10. 侯乐乐,翁效林,黄文鹏,周容名,刘伟萍. 湿陷性黄土地铁隧道基底注浆加固处治试验. 长安大学学报(自然科学版). 2022(02): 91-102 .
    11. 杨喆,王家鼎,李开超,赵金刚,晁军. 西安北至机场城际铁路黄土塬段现场试坑浸水试验研究. 铁道学报. 2022(06): 107-115 .
    12. 徐硕昌,刘德仁,王旭,杨佳乐,张渊博,陈伟南. 兰州新区大厚度湿陷性黄土宏细观参数试验研究. 铁道科学与工程学报. 2022(07): 1918-1926 .
    13. 闫晓龙. 宝麟线石咀山隧道工程地质特征分析. 黑龙江交通科技. 2022(10): 121-123 .
    14. 金鑫,王铁行,张玉,张猛. 计算黄土卸荷湿陷量的模量折减法研究. 岩石力学与工程学报. 2021(07): 1473-1483 .
    15. 毛忠安,陈恒大. 基于正负摩阻力的湿陷性黄土桩端承载力数值分析. 西部大开发(土地开发工程研究). 2020(02): 40-43 .
    16. 王志超,谢远,谢永利. 黄土隧道新型支护结构施工力学性能分析. 现代隧道技术. 2020(05): 125-135 .
    17. 苏忍,张恒睿,张稳军,张高乐. 兰州地铁大厚度湿陷性黄土地层的现场浸水试验研究. 土木工程学报. 2020(S1): 186-193 .
    18. 李骏,邵生俊,佘芳涛,王永鑫. 砂井浸水试验在黄土隧道地基湿陷变形评价中的应用研究. 岩石力学与工程学报. 2019(09): 1937-1944 .
    19. 金鑫,王铁行,赵再昆,罗扬. 卸荷条件下黄土湿陷系数的计算方法及验证. 岩土工程学报. 2019(10): 1959-1966 . 本站查看
    20. 张乾翼,冯文强,赖国泉. 某黄土隧道浅埋段地表变形研究及治理方案. 铁道勘察. 2019(06): 55-58 .
    21. 吴爽,高玉广,赵权利,梁潇丹. 黄土地场自重湿陷量实测值与计算值差异的原因分析. 西北地质. 2019(04): 263-269 .
    22. 胡国平,郑明新,范亚坤,钟亮根. 某高速铁路路隧过渡段变形特点及机理分析. 北京交通大学学报. 2018(06): 24-31 .

    Other cited types(19)

Catalog

    Article views (257) PDF downloads (126) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return