• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Sheng, ZHONG Chun-xin, WANG Jing, HE Shun-bin. Experimental study on filling standard of high rockfill dams with soil core[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 561-566. DOI: 10.11779/CJGE201903019
Citation: ZHU Sheng, ZHONG Chun-xin, WANG Jing, HE Shun-bin. Experimental study on filling standard of high rockfill dams with soil core[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 561-566. DOI: 10.11779/CJGE201903019

Experimental study on filling standard of high rockfill dams with soil core

More Information
  • Received Date: October 22, 2017
  • Published Date: March 24, 2019
  • The monitoring data of high ECRDs have shown that the deformation coordination in dam material zones does not meet the design goal, which is related to the degree of matching in the current specifications of filling for the filtration zone, transition zone and rockfill zone. Based on the fractal theory, the relative density tests on dam shell materials are carried out, and the relative density values are obtained. The filling criteria for the dam shell material zone are discussed. The results show that: (1) Due to its superior gradation and excellent compaction characteristics, the site average porosity rate of the rockfill is 19% and is lower than the design value 21%, but its relative density is only 0.65. (2) The relative densities in the anti-filter zone No. 2, transition zone and rockfill zone are 0.96, 0.75 and 0.65, respectively, and their relative difference may be the main reason for the deformation coordination without achieving the design goal. (3) The compaction function matching technique of indoor and field relative density tests can solve the problem that the relative density of the cushion materials or the cushion materials of the face dam is greater than 1.0. (4) The deformation control of high rockfill dams needs to consider the effect of gradation. The filling design should adopt the double control indices of porosity rate and relative density. The conclusions may provide a reference for the design and construction of high rockfill dams.
  • [1]
    马洪琪. 中国坝工技术的发展与创新.水力发电学报[J]. 2014, 33(6): 1-10.
    (MA Hong-qi.Development and innovation of dam construction technology in China[J]. Journal of Hydroelectric Engineering, 2014, 33(6): 1-10. (in Chinese))
    [2]
    郦能惠. 高混凝土面板堆石坝设计新理念[J].中国工程科学, 2011, 13(3): 12-18.
    (LI Neng-hui.New concept of design for high concrete face rockfill dams[J]. Engineering Sciences, 2011, 13(3): 12-18. (in Chinese))
    [3]
    DLT5395—2007碾压式土石坝设计规范[S]. 2007.
    (DLT5395—2007 Design code for roller compacted earth-rock dam[S]. 2007. (in Chinese))
    [4]
    DLT 5016—2011混凝土面板堆石坝设计规范[S]. 2011.
    (DLT 5016—2011 Design code for concrete face rockfill dams[S]. 2011. (in Chinese))
    [5]
    SOWERS GEORGE F, DAVIE J, MANSOER M N.Jatiluhur dam: problems and rehabilitation[J]. Geotechnical Special Publication, 1993, 35: 17-34.
    [6]
    UNAL B, EREN M, YALCIN M G.Investigation of eakage at Ataturk dam and hydroelectric power plant by means of hydrometric measurements[J]. Engineering Geology, 2007, 93(1/2): 45-63.
    [7]
    KALKAN Y, POTTS L V, BILGI S.Assessment of vertical deformation of the Atatürk dam using geodetic observations[J]. Journal of Surveying Engineering, 2016, 142(2): 1-14.
    [8]
    韩朝军, 朱晟. 土质防渗土石坝坝顶裂缝开裂机理与成因分析[J]. 中国农村水利水电, 2013(8): 116-120.
    (HAN Chao-jun, ZHU Sheng.Cracking mechanism and cause analysis of cracks in earth dam foundation[J]. China Rural Water and Hydropower, 2013(8): 116-120. (in Chinese))
    [9]
    MARENGO H.Case study: dam safety during construction, lessons of the overtopping diversion works at Aguamilpa dam[J]. Journal of Hydraulic Engineering, 2006, 132(11): 1121-1127.
    [10]
    关志诚. 紫坪铺高面板坝“5.12”震害修复处理[J]. 中国水利, 2008, 20: 71-76.
    (GUAN Zhi-cheng.Repair of high face rock-fill dam after "May 12" Earthquake[J]. China Water Resources, 2008, 20: 71-76. (in Chinese))
    [11]
    邢林生, 朱锦杰, 赵晓宇. 天生桥一级大坝面板挤压破损分析[J]. 水力发电学报. 2008, 27(5): 59-63.
    (XING Lin-sheng, ZHU Jin-jie, ZHAO Xiao-yu.Analysis of squeezing damage of slabs on Tianshengqiao 1st stage dam[J]. Journal of Hydroelectric Engineering, 2008, 27(5): 59-63. (in Chinese))
    [12]
    中国电建昆明院糯扎渡安全监管中心. 糯扎渡水电站心墙堆石坝安全监测报告[R]. 昆明: 中国电建昆明院糯扎渡安全监管中心, 2015.
    (Nuozhadu Safety Supervision Center of China Electric Construction Group Kunming Survey and Design Research Institute Co., Ltd. Safety monitoring report of core wall rockfill dam of Nuozhadu Hydropower Station[R]. Kunming: Nuozhadu Safety Supervision Center of China Electric Construction Group Kunming Survey and Design Research Institute Co., Ltd. 2015. (in Chinese))
    [13]
    雷红军, 刘兴宁, 冯业林. 糯扎渡大坝坝料现场压实特性及心墙安全性研究[J]. 大坝与安全, 2014(5): 26-31.
    (LEI Hong-jun, LIU Xing-ning, FENG Ye-lin.Research on field compaction characteristic of Nuozadu dam materials and safety of core wall[J]. Dam and Safety, 2014(5): 26-31. (in Chinese))
    [14]
    四川大唐国际甘孜公司安全监测中心. 长河坝水电站安全监测报告[R]. 成都: 四川大唐国际甘孜公司安全监测中心, 2016.
    (SiChuan Datang International Ganzi Company Safety Monitoring Center. Changheba hydropower station safety monitoring report[R]. Chengdu: SiChuan Datang International Ganzi Company Safety Monitoring Center, 2016. (in Chinese))
    [15]
    四川大唐国际甘孜公司中心实验室. 长河坝水电站2015年度质量检测分析报告[R]. 成都: 四川大唐国际甘孜公司中心实验室, 2015.
    (SiChuan Datang Inter- national Ganzi Company Central Laboratory. 2015 quality inspection analysis report[R]. Chengdu: SiChuan Datang Inter- national Ganzi Company Central Laboratory, 2015. (in Chinese))
    [16]
    NBT 35016—2013土石筑坝材料碾压试验规程[S]. 2013.
    (NBT 35016—2013 Earth and rock dam material rolling test procedure[S]. 2013. (in Chinese))
    [17]
    朱晟. 粗粒筑坝材料现场压实质量的控制标准研究[J]. 水力发电, 2011, 37(12): 22-26.
    (ZHU Sheng.Study on on-site compaction quality control standard of coarse-grained materials[J]. Hydroelectric Power, 2011, 37(12): 22-26. (in Chinese))
    [18]
    MARSAL R J.Large-scale of rockfill material[J]. Journal of the Soil Mechanics and Foundation Division, ASCE, 1967. 93(2): 27-43.
    [19]
    DLT5356—2006水电水利工程粗粒土试验规程[S]. 2006.
    (DLT5356—2006 Test code for coarse grained soil in hydropower and water conservancy projects[S]. 2006. (in Chinese))
    [20]
    朱晟. 一种确定粗粒料室内缩尺试验相对密度制样标准的方法与试验装置[P]. 中国专利:ZL 20151067446.8, 2017-09-29.
    (ZHU Sheng. Method and test device for determining relative density sample preparation standard for coarse-grained indoor scale test[P]. China Patent: ZL 20151067446.8, 2017-09-29. (in Chinese))
    [21]
    朱晟, 钟春欣, 郑希镭, 等. 堆石体的填筑标准与级配优化研究[J]. 岩土工程学报, 2018, 40(1): 108-115.
    (ZHU Sheng, ZHONG Chun-xin, ZHENG Xi-lei, et al.Filling standards and gradation optimization of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 108-115. (in Chinese))
    [22]
    ASTM—D4253—2016使用振动台测定土壤最大指数密度和单位重量的试验方法[S]. 2016.
    (ASTM—D4253—2016 Standard test methods for maximum index density and unit weight of soils using a vibratory table[S]. 2016. (in Chinese))
    [23]
    朱晟, 邓石德, 宁志远. 基于分形理论的堆石料级配设计方法[J]. 岩土工程学报, 2017, 39(6): 1151-1155.
    (ZHU Sheng, DENG Shi-de, NING Zhi-yuan, et al.Gradation design method of rockfill materials based on the fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1151-1155. (in Chinese))
  • Cited by

    Periodical cited type(1)

    1. 叶雨柯,于浩,马亚楠,任旺. 昌波水电站地下厂房边坡降雨入渗数值分析. 水力发电. 2022(02): 36-41+60 .

    Other cited types(4)

Catalog

    Article views (256) PDF downloads (125) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return