• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHI Quan-bin, YANG Ping, TAN Jin-zhong, TANG Guo-yi. Development of measuring system by pile-pressing method and experimental study on adfreezing strength at interface between frozen soil and structure[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 139-147. DOI: 10.11779/CJGE201901015
Citation: SHI Quan-bin, YANG Ping, TAN Jin-zhong, TANG Guo-yi. Development of measuring system by pile-pressing method and experimental study on adfreezing strength at interface between frozen soil and structure[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 139-147. DOI: 10.11779/CJGE201901015

Development of measuring system by pile-pressing method and experimental study on adfreezing strength at interface between frozen soil and structure

More Information
  • Received Date: February 13, 2018
  • Published Date: January 24, 2019
  • In order to study the influence factors and rules of adfreezing strength at the interface between frozen soil and structure, according to the traditional definition of adfreezing strength at the interface, a measuring system for determining the adfreezing strength by pile-pressing method is developed. Based on this system, a series of experimental studies on the adfreezing strength at the interface are carried out under various influence factors. The experimental results show that the adfreezing strength at the interface between frozen soil and structure exhibits brittle failure and strain softening, and the residual adfreezing strength is characterized by periodic fluctuation and decay. The adfreezing strength is significantly affected by the temperature and roughness of the interface, and they are linear and logarithmic functions respectively in the test temperature range. Using the micro-earth pressure sensor embedded at the side of the compression pile, the variation laws of the compressive stress at the interface with the freezing time, shear displacement and distribution along the pile are revealed, and then they are compared with and verified by those of the interface temperature and adfreezing strength.
  • [1]
    崔托维奇. 冻土力学[M]. 张长庆, 等译. 北京: 科学出版社, 1985: 178-183.
    (TSYTOVICH H A.Frozen soil mechanics[M]. ZHANG Chang-qing, et al Trans. Beijing: Science Press, 1985: 178-183. (in Chinese))
    [2]
    邱国庆, 刘经仁, 刘鸿绪. 冻土学辞典[M]. 兰州:甘肃科学技术出版社, 1994: 115-117.
    (QIU Guo-qing, LIU Jing-ren, LIU Hong-xu.Geocryological glossary[M]. Lanzhou: Gansu Science and Technology Press, 1994: 115-117. (in Chinese))
    [3]
    JOONYONG L, YOUNGSEOK K, CHANGHO C.A study for adfreeze bond strength developed between weathered granite soils and aluminum plate[J]. Journal of the Korean Geo-Environmental Society, 2013, 14(12): 23-30.
    [4]
    吉延峻, 贾昆, 俞祁浩, 等. 现浇混凝土-冻土接触面冻结强度直剪试验研究[J]. 冰川冻土, 2017, 39(1): 86-91.
    (JI Yan-jun, JIA Kun, YU Qi-hao, et al.Direct shear tests of freezing strength at the interface between cast-in-situ concrete and frozen soil[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 86-91. (in Chinese))
    [5]
    吕鹏, 刘建坤, 崔颖辉. 冻土-混凝土接触面动剪强度研究[J]. 岩土力学, 2013, 34(增刊2): 180-183.
    (LÜ Peng, LIU Jian-kun, CUI Ying-hui.A study of dynamic shear strength of frozen soil-concrete contact interface[J]. Rock and Soil Mechanics, 2013, 34(S2): 180-183. (in Chinese))
    [6]
    LIU J K, CUI Y H, WANG P C, et al.Design and validation of a new dynamic direct shear apparatus for frozen soil[J]. Cold Regions Science and Technology, 2014, 106: 207-215.
    [7]
    崔颖辉, 刘建坤, 吕鹏. 冻土动荷载直剪仪的研制[J]. 岩土力学, 2013, 34(增刊2): 486-490.
    (CUI Ying-hui, LIU Jian-kun, LÜ Peng.Development of dynamic load direct shear apparatus for frozen soils[J]. Rock and Soil Mechanics, 2013, 34(S2): 486-490. (in Chinese))
    [8]
    LÜ P, LIU J K, CUI Y H.A study on dynamic shear strength on frozen soil-concrete interface[J]. Sciences in Cold and Arid Regions, 2013, 5(4): 408-412.
    [9]
    赵联桢, 杨平, 王海波. 大型多功能冻土-结构接触面循环直剪系统研制及应用[J]. 岩土工程学报, 2013, 35(4): 707-713.
    (ZHAO Lian-zhen, YANG Ping, WANG Hai-bo.Development and application of large-scale multi- functional frozen soil-structure interface cycle-shearing system[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 707-713. (in Chinese))
    [10]
    石泉彬, 杨平, 王国良. 人工冻结砂土与结构接触面冻结强度试验研究[J]. 岩石力学与工程学报, 2016, 35(10): 2142-2151.
    (SHI Quan-bin, YANG Ping, WANG Guo-liang.Experimental study on adfreezing strength of the interface between artificial frozen sand and structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2142-2151. (in Chinese))
    [11]
    ZHAO L Z, YANG P, WANG J G, et al.Cyclic direct shear behaviors of frozen soil-structure interface under constant normal stiffness condition[J]. Cold Regions Science and Technology, 2014, 102: 52-62.
    [12]
    ZHAO L Z, YANG P, WANG J G, et al. Impacts of surface roughness and loading conditions on cyclic direct shear behaviors of an artificial frozen silt-structure interface[J]. Cold Regions Science and Technology, 2014, 106/107: 183-193.
    [13]
    ZHAO L Z, YANG P, ZHANG L C, et al.Cyclic direct shear behaviors of an artificial frozen soil-structure interface under constant normal stress and sub-zero temperature[J]. Cold Regions Science & Technology, 2016, 133: 70-81.
    [14]
    LIU J K, LÜ P, CUI Y H, et al. Experimental study on direct shear behavior of frozen soil-concrete interface[J]. Cold Regions Science and Technology, 2014, 104/105: 1-6.
    [15]
    吕鹏, 刘建坤. 冻土与混凝土接触面直剪试验研究[J]. 铁道学报, 2015, 37(2): 106-110.
    (LÜ Peng, LIU Jian-kun.An experimental study on direct shear tests of frozen soil-concrete interface[J]. Journal of the China Railway Society, 2015, 37(2): 106-110. (in Chinese))
    [16]
    BIGGAR K W, SEGO D C.The strength and deformation behaviour of model adfreeze and grouted piles in saline frozen soils[J]. Canadian Geotechnical Journal, 2011, 30(2): 319-337.
    [17]
    刘鸿绪. 对切向冻胀力沿桩侧表面分布的探讨[J]. 冰川冻土, 1993, 15(2): 289-292.
    (LIU Hong-xu.Discussion on the distribution of tangential frost heaving forces along the lateral surface of pile[J]. Journal of Glaciology and Geocryology, 1993, 15(2): 289-292. (in Chinese))
    [18]
    张军伟, 马巍, 王大雁, 等. 青藏高原多年冻土区钻孔灌注桩承载特性试验研究[J]. 冰川冻土, 2008, 30(3): 482-487.
    (ZHANG Jun-wei, MA Wei, WANG Da-yan, et al.In-situ experimental study of the bearing characteristics of cast-in-place bored pile in permafrost regions of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2008, 30(3): 482-487. (in Chinese))
    [19]
    汪仁和, 王伟, 陈永锋. 冻土中单桩抗压承载力模型试验研究[J]. 冰川冻土, 2005, 27(2): 188-193.
    (WANG Ren-he, WANG Wei, CHEN Yong-feng.Model experimental study on compressive bearing capacity of single pile in frozen soil[J]. Journal of Glaciology and Geocryology, 2005, 27(2): 188-193. (in Chinese))
    [20]
    汪仁和, 王伟, 程永锋. 冻土中单桩抗拔承载力的模型试验研究[J]. 冰川冻土, 2006, 28(5): 766-771.
    (WANG Ren-he, WANG Wei, CHEN Yong-feng.Model study of tensile bearing capacity of a single pile under frozen condition[J]. Journal of Glaciology and Geocryology, 2006, 28(5): 766-771. (in Chinese))
    [21]
    程永锋, 鲁先龙, 刘华清, 等. 青藏铁路110 kV输电线路冻土桩基模型试验研究[J]. 岩石力学与工程学报, 2004, 23(增刊1): 4378-4382.
    (CHENG Yong-feng, LU Xian-long, LIU Hua-qing, et al.Model test study on pile foundation of 110 kV transmission line of Qinghai-Tibet railway in frozen soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(S1): 4378-4382. (in Chinese))
    [22]
    ZHANG J M, ZHU Y L, ZHANG J Y.Adfreeze strength of model piles in frozen soil under dynamic loads[C]// Proceedings of the Seventh Permafrost International Conference, Collection Nordicana, 1998: 1217-1221.
    [23]
    PUSWEWALA U G A. Computational modelling of structure- frozen soil/ice interaction[D]. Manitoba: The University of Manitoba (Canada), 1991: 20-58.
    [24]
    贾艳敏, 郭红雨, 郭启臣. 多年冻土区灌注桩桩-冻土相互作用有限元分析[J]. 岩石力学与工程学报, 2007, 26(增刊1): 3134-3140.
    (JIA Yan-min, GUO Hong-yu, GUO Qi-chen.Finite element analysis of bored pile-frozen soil interactions in permafrost[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3134-3140. (in Chinese))
    [25]
    徐春华, 徐学燕, 邱明国, 等. 多年冻土地区工程桩桩侧冻结力数值分析[J]. 哈尔滨工业大学学报, 2007, 39(4): 542-545.
    (XU Chun-hua, XU Xue-yan, QIU Ming-guo, et al.Numerical analysis of adfreezing force of engineering pile in permafrost[J]. Journal of Harbin Institute of Technology, 2007, 39(4): 542-545. (in Chinese))
    [26]
    董盛时, 董兰凤, 温智, 等. 青藏冻结粉土与混凝土基础接触面本构关系研究[J]. 岩土力学, 2014, 35(6): 1629-1633.
    (DONG Sheng-shi, DONG Lan-feng, WEN Zhi, et al.Study of constitutive relation of interface between frozen Qinghai-Tibet silt and concrete[J]. Rock and Soil Mechanics, 2014, 35(6): 1629-1633. (in Chinese))
    [27]
    杨平, 赵联桢, 王国良. 冻土与结构接触面循环剪切损伤模型[J]. 岩土力学, 2016, 37(5): 1217-1223.
    (YANG Ping, ZHAO Lian-zhen, WANG Guo-liang.A damage model for frozen soil-structure interface under cyclic shearing[J]. Rock and Soil Mechanics, 2016, 37(5): 1217-1223. (in Chinese))
    [28]
    MT/T 593.1—2011 人工冻土试验取样及试样制备方法[S]. 2011.
    (MT/T 593.1—2011 Experimental sampling and sample preparation method for artificial frozen soil[S]. 2011. (in Chinese))
    [29]
    石泉彬, 杨平, 孙厚超. 直剪仪多功能改进与试验研究[J]. 河海大学学报, 2017, 45(5): 457-463.
    (SHI Quan-bin, YANG Ping, SUN Hou-chao.Improvement and experimental study on the multi function of frozen soil direct shear apparatus[J]. Journal of Hohai University, 2017, 45(5): 457-463. (in Chinese))
    [30]
    SHI Q B, YANG P, WANG G L.Experimental research on adfreezing strengths at the interface between frozen fine sand and structures[J]. Scientia Iranica, 2018, 25(2): 663-674.
  • Cited by

    Periodical cited type(17)

    1. 王博通,宋焕东,高樯,葛英兰,刘国祥,臧洋. 多年冻土区桩基础荷载传递规律及影响因素模拟研究. 公路. 2025(02): 154-162 .
    2. 唐丽云,丁冰,郑建国,许培智,邱培勇. 寒区冻土桩基承载特性研究现状与展望. 岩土工程技术. 2024(03): 253-262 .
    3. 孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
    4. 胡峻晖,崔宏环,王跃庚,李续靖. 细粒含量对冻土-桩界面剪切特性影响研究. 力学季刊. 2024(03): 842-854 .
    5. 邓声君,张金海,陈浩林,蒋刚,龚晓南. 基于分数阶导数的冻土–结构接触面剪切蠕变模型研究. 岩石力学与工程学报. 2024(12): 3070-3080 .
    6. 郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 . 本站查看
    7. 王博通,张明礼,王运华,高樯,温智,周志伟,马巍,王大雁. 分级加卸载作用下冻结界面黏弹塑性剪切蠕变解耦分析研究. 冰川冻土. 2023(06): 1849-1858 .
    8. 孙厚超,杨平,卜迎春,石飞停. 冻黏土与结构接触界面层单剪损伤模型. 森林工程. 2022(01): 115-123 .
    9. 孙厚超,马爱群,杨平,张飞. 冻黏土界面层单调剪切数值模拟及实验对比分析. 森林工程. 2022(02): 133-139 .
    10. 赵江涛. 黄黏土地区隧道结构体与土体接触面受力分析. 岩土工程技术. 2022(04): 267-270 .
    11. 孙厚超,杨平,张忠扩,陆仁艳. 循环剪切下冻黏土与结构接触面剪切异向性研究. 森林工程. 2021(06): 82-89 .
    12. 何鹏飞,马巍,穆彦虎,董建华,黄永庭. 冻融循环对冻土–混凝土界面冻结强度影响的试验研究. 岩土工程学报. 2020(02): 299-307 . 本站查看
    13. 刘庆贺,王永涛,徐湘田,赵宇琴,李高升,张伟东. 冻结粉质黏土-桩基接触面剪切特性试验研究. 冰川冻土. 2020(02): 491-498 .
    14. 刘文博,陈璐,胡俊,曾东灵,王志鑫. 多排冻结管斜型排布温度场发展规律数值分析. 海南大学学报(自然科学版). 2020(03): 290-299 .
    15. 秦虎,贾剑青,李科技,马亢. 冻结条件下硫酸盐渍土与混凝土接触面力学特性试验研究. 三峡大学学报(自然科学版). 2020(06): 50-55 .
    16. 陈海康,梁海安,胡清波,邱思检,刘超,张龙鹏. 土-结构物接触面试验研究进展综述. 重庆建筑. 2019(09): 51-54 .
    17. 何爽,胡向东. 管幕冻结法钢管-冻土接触面剪切试验研究. 隧道建设(中英文). 2019(11): 1864-1870 .

    Other cited types(19)

Catalog

    Article views (279) PDF downloads (185) Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return