• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Quan-sheng, WEI Lai, LEI Guang-feng, LIU Qi, PENG Xing-xin, LIU He. Experimental study on damage strength of crack initiation and evaluation of brittle parameters of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1782-1789. DOI: 10.11779/CJGE201810004
Citation: LIU Quan-sheng, WEI Lai, LEI Guang-feng, LIU Qi, PENG Xing-xin, LIU He. Experimental study on damage strength of crack initiation and evaluation of brittle parameters of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1782-1789. DOI: 10.11779/CJGE201810004

Experimental study on damage strength of crack initiation and evaluation of brittle parameters of sandstone

More Information
  • Received Date: August 04, 2017
  • Published Date: October 24, 2018
  • The strengths of crack initiation and damage are the important stress thresholds for their significance in analyzing the progressive failure process of rock, which can be applied in the prediction of brittle failure in tunnels. Firstly, the uniaxial and triaxial compression tests are conducted on two sets of hard sandstones, while their strain and acoustic emission (AE) characteristics are analyzed to study the evolution process of crack. The measured lateral dilation strains and the AE counts of rock samples can characterize their crack accumulation accurately according to the test results. And also, there is a consistent segmented transformation law in these two figures as the inner micro-cracks are accumulated. Thus the strengths of crack initiation and damage of the sandstone samples can be determined based on a detailed analysis on stage boundaries of the above curves. The average strength of crack initiation of green sandstone samples is 0.42 of its peak strength, while that of red sandstone samples is 0.48 of its peak strength. Furthermore the confinement influence on evolution process of crack is discussed by comparing different test results under varying confinements. It is found that the initial internal friction angle (φ0) of sandstone samples at the crack initiation stage is less than its ultimate value (φ) when the peak load is applied. And the calculated initial φ0 is about 1/2 of the ultimate φ. As a result, the initial internal friction level φ0/φ of rock is defined, which has an inverse relation with the ratio of uniaxial compressive strength to tensile strength σc /σt , and it can also reflect the brittleness of rock. And the linear strength threshold of crack initiation is established, while the slope of curve represents the influence of friction effects.
  • [1]
    MARTIN C D.The strength of massive Lac Du Bonnet granite around underground openings[D]. Manitoba, Canada: University of Manitoba, 1993.
    [2]
    MARTIN C D, CHRISTIANSSON R.Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(2): 219-228.
    [3]
    DIEDERICHS M S, KAISER P K, EBERHARDT E.Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(5): 785-812.
    [4]
    侯文诗, 李守定, 李晓, 等. 岩石扩容起始特性与峰值特性的比较[J]. 岩土工程学报, 2013, 35(8): 1478-1485.
    (HOU Wen-shi, LI Shou-ding, LI Xiao, et al.Comparison between dilatancy onset and peak of different rocks[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1478-1485. (in Chinese))
    [5]
    NICKSIAR M, MARTIN C D.Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks[J]. Rock Mechanics & Rock Engineering, 2012, 45(4): 607-617.
    [6]
    周辉, 孟凡震, 卢景景, 等. 硬岩裂纹起裂强度和损伤强度取值方法探讨[J]. 岩土力学, 2014, 35(4): 913-920.
    (ZHOU Hui, MENG Fan-zhen, LU Jing-jing.Discussion on methods for calculating crack initiation strength and crack damage strength for hard rock[J]. Rock and Soil Mechanics, 2014, 35(4): 913-920. (in Chinese))
    [7]
    刘泉声, 胡云华, 刘滨. 基于试验的花岗岩渐进破坏本构模型研究[J]. 岩土力学, 2009, 30(2): 289-296.
    (LIU Quan-sheng, HU Yun-hua, LIU Bing.Progressive damage constitutive models of granite based on experimental results[J]. Rock and Soil Mechanics, 2009, 30(2): 289-296. (in Chinese))
    [8]
    刘宁, 张春生, 褚卫江. 锦屏深埋大理岩破裂特征与损伤演化规律[J]. 岩石力学与工程学报, 2012, 31(8): 1606-1613.
    (LIU Ning, ZHANG Chun-sheng, CHU Wei-jiang.Fracture characteristics and damage evolution law of Jinping deep marble[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1606-1613. (in Chinese))
    [9]
    彭俊, 荣冠, 周创兵, 等. 水压影响岩石渐进破裂过程的试验研究[J]. 岩土力学, 2013, 34(4): 941-954.
    (PENG Jun, RONG Guan, ZHOU Chuang-bing, et al.Experimental study of effect of water pressure on progressive failure process of rocks under compression[J]. Rock and Soil Mechanics, 2013, 34(4): 941-954. (in Chinese))
    [10]
    HAJIABDOLMAJID V, KAISER P K, MARTIN C D.Modelling brittle failure of rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(6): 731-741.
    [11]
    卢兴利, 刘泉声, 苏培芳. 考虑扩容碎胀特性的岩石本构模型研究与验证[J]. 岩石力学与工程学报, 2013, 32(9): 1886-1893.
    (LU Xing-li, LIU Quan-sheng, SU Pei-fang.Constitutive model of rocks considering dilatancy-bulking behaviour and its calibration[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1886-1893. (in Chinese))
    [12]
    BRACE W F, PAULDING B W, SCHOLZ C.Dilatancy in the fracture of crystalline rocks[J]. Journal of Geophysical Research, 1966, 71(16): 3939-3953.
    [13]
    李浩然, 杨春和, 刘玉刚, 等. 花岗岩破裂过程中声波与声发射变化特征试验研究[J]. 岩土工程学报, 2014, 36(10): 1915-1923.
    (LI Hao-ran, YANG Chun-he, LIU Yu-gang, et al.Experimental research on ultrasonic velocity and acoustic emission properties of granite under failure process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1915-1923. (in Chinese))
    [14]
    朱泽奇, 盛谦, 冷先伦, 等. 三峡花岗岩起裂机制研究[J]. 岩石力学与工程学报, 2007, 26(12): 2570-2575.
    (ZHU Ze-qi, SHENG Qian, LENG Xian-lun, et al.Research on relationship between crack initiation stress level and brittleness indices for brittle rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2570-2575. (in Chinese))
    [15]
    CAI M, KAISER P K, TASAKA Y, et al.Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(5): 833-847.
    [16]
    HOEK E, BIENIAWSKI Z T.Brittle fracture propagation in rock under compression[J]. International Journal of Fracture, 1965, 1(3): 137-155.
    [17]
    黄书岭. 高应力下脆性岩石的力学模型与工程应用研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2008.
    (HUANG Shu-ling.Study on mechanical model of brittle rock under high stress condition and its engineering applications[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2008. (in Chinese))
    [18]
    CAI M.Practical estimates of tensile strength and Hoek-Brown strength parameter mi, of brittle rocks[J]. Rock Mechanics and Rock Engineering, 2010, 43(2): 167-184.
    [19]
    PESTMAN B J, MUNSTER J G V. An acoustic emission study of damage development and stress-memory effects in sandstone[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1996, 33(6): 585-593.
    [20]
    LAU JSO, GORSKI B.Uniaxial and triaxial compression tests on URL rock samples from boreholes 207-045-GC3 and 209-069-PH3[M]. Mining Research Laboratories, 1992.
    [21]
    ZHAO X G, CAI M, WANG J, et al.Damage stress and acoustic emission characteristics of the Beishan granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 64: 258-269.
    [22]
    LI C, NORDLUND E.Experimental verification of the Kaiser effect in rocks[J]. Rock Mechanics and Rock Engineering, 1993, 26(4): 333-351.
  • Related Articles

    [1]HUANG Juehao, QIU Yuefeng, WU Jiaming, LI Yinan, CHEN Jian, FU Xiaodong. Experimental study on coupling effects of cyclic confining pressure and intermittent cyclic loading on deformation behavior of saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 48-52. DOI: 10.11779/CJGE2024S10009
    [2]Effect of initial static shear stress and cyclic loading direction on the liquefaction behavior of saturated dense sand[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240591
    [3]HUANG Juehao, WANG Hongchao, CHEN Jian, FU Xiaodong, YAN Xiaoling, MA Chao. Effects of intermittent cyclic loading with cyclic confining pressure on deformation behaviors of saturated clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 67-70. DOI: 10.11779/CJGE2023S10038
    [4]SUN Anyuan, YANG Gang, REN Yubin, KONG Gangqiang, YANG Qing. Undrained heating effects on monotonic shear behaviors and critical cyclic stress ratios of deep-sea sediment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2110-2118. DOI: 10.11779/CJGE20220892
    [5]HUANG Jue-hao, WANG Ying-wu, CHEN Jian, LIU Fu-sheng, HOU Feng, FU Xiao-dong, MA Chao. Experimental study on deformation behaviors of overconsolidated clay under cyclic confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 245-248. DOI: 10.11779/CJGE2021S2058
    [6]HUANG Jue-hao, CHEN Jian, KE Wen-hui, ZHONG Yu, QIU Yue-feng. Coupling effects of bidirectional cyclic loading and loading frequency on pore water pressure of saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 71-74. DOI: 10.11779/CJGE2017S2018
    [7]WANG Yuan-zhan, LEI Ji-chao, LI Qing-mei, HU Shen-rong. Post-cyclic strength degradation behavior of soft clay under anisotropic consolidation and numerical simulation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1557-1564. DOI: 10.11779/CJGE201709002
    [8]WANG Jun, WANG Pan, LIU Fei-yu, HU Xiu-qing, CAI Yuan-qiang. Cyclic and post-cyclic direct shear behaviors of geogrid-sand interface with different soil densities[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 342-349. DOI: 10.11779/CJGE201602019
    [9]ZHENG Gang, HUO Hai-feng, LEI Hua-yang. Undrained strength characteristics of saturated undisturbed and remolded silty clay after cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 400-408.
    [10]Stress and deformation behaviors of rockfill under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
  • Cited by

    Periodical cited type(7)

    1. 郝鹏 ,杨浩 ,冯少军 ,王博 . 高置信水平结构逆可靠度分析与优化方法研究进展. 力学学报. 2024(02): 310-326 .
    2. 王钰轲,邵琳岚,万愉快,余翔,张蓓,钟燕辉. 基于K-L展开法考虑土体参数空间变异性的土石坝坝坡可靠度分析. 水利学报. 2024(12): 1417-1427 .
    3. 孙良鑫. 基覆面形式对堆积体边坡失效风险影响分析. 金属矿山. 2023(06): 184-191 .
    4. 韩非,胡超. 基于滑移线场理论的概率边坡设计. 科学技术与工程. 2023(20): 8771-8779 .
    5. 曹子君,周强,李典庆. 边坡稳定确定性设计与可靠度设计的安全判据等价性充分条件. 岩土工程学报. 2023(08): 1703-1712 . 本站查看
    6. 吴兴征,刘赫. 土工构筑物的逆几何可靠性分析算法. 土木与环境工程学报(中英文). 2023(05): 106-115 .
    7. 王涛,马骏,周国庆,许大晴,季雨坤. 冻土地层三维空间变异性表征及冻结帷幕温度特征值演化过程研究. 岩石力学与工程学报. 2022(10): 2094-2108 .

    Other cited types(9)

Catalog

    Article views (396) PDF downloads (300) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return