• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SUN Anyuan, YANG Gang, REN Yubin, KONG Gangqiang, YANG Qing. Undrained heating effects on monotonic shear behaviors and critical cyclic stress ratios of deep-sea sediment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2110-2118. DOI: 10.11779/CJGE20220892
Citation: SUN Anyuan, YANG Gang, REN Yubin, KONG Gangqiang, YANG Qing. Undrained heating effects on monotonic shear behaviors and critical cyclic stress ratios of deep-sea sediment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2110-2118. DOI: 10.11779/CJGE20220892

Undrained heating effects on monotonic shear behaviors and critical cyclic stress ratios of deep-sea sediment

More Information
  • Received Date: July 16, 2022
  • Available Online: March 09, 2023
  • A series of temperature-controlled triaxial tests are conducted on the deep-sea sediment from the Western trough of the South China Sea. The undrained heating effects on undrained shear strength, pore pressure and critical cyclic stress ratio are discussed. Based on the Yao's theoretical framework, the expression for temperature-induced excess pore pressure is given, and then the relationship between the undrained shear strength and the critical cyclic stress ratio is discussed. The test results indicate that the temperature-induced excess pore pressure leads to the decrease of the effective stress, weakens the undrained shear strength, and results in quasi-overconsolidated mechanical properties. The development rate of accumulated strain increases noticeably under cyclic shear conditions as the temperature rises, but at the initial shear stage, the high temperature prevents the development of excess pore pressure, even leads to a negative value. The approach for calculating the threshold cycle stress ratio based on the production of the normalized excess pore pressure is inapplicable. It is proposed that the development trend of the accumulative strain and excess pore pressure should be fully considered when determining the limiting cycle stress ratio of quasi-over consolidated samples. The shear strength and critical cyclic stress ratio decrease with the increasing temperature which should be fully considered in engineering.
  • [1]
    SUN A Y, YANG G, YANG Q, et al. Experimental investigation of thermo-mechanical behaviors of deep-sea clay from the South China Sea[J]. Applied Ocean Resarch, 2022, 119: 103015. doi: 10.1016/j.apor.2021.103015
    [2]
    REN Y, YANG S, ZHANG S, et al. Experimental study on the thixotropic strength recovery and microstructural evolution of marine clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(8): 040220529.
    [3]
    LI H, KONG G, YANG Q. Thermal effects on the dynamic properties of marine sediment under long-term low cyclic stress[J]. Applied Ocean Resarch, 2020, 104: 102361. doi: 10.1016/j.apor.2020.102361
    [4]
    FANG J C, KONG G Q, YANG Q. Group performance of energy piles under cyclic and variable thermal loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2022, 148(8): 04022060. doi: 10.1061/(ASCE)GT.1943-5606.0002840
    [5]
    GRAHAM J, TANAKA N, CRILLY T, et al. Modified Cam-Clay modelling of temperature effects in clays[J]. Canadian Geotechnical Journal, 2001, 38(3): 608-621. doi: 10.1139/t00-125
    [6]
    ABUEL-NAGA H M, BERGADO D T, RAMANA G V, et al. Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006; 132: 902-10. doi: 10.1061/(ASCE)1090-0241(2006)132:7(902)
    [7]
    YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2019, 41: 1050-1057.
    [8]
    HAMIDIA, TOURCHI S, KARDOONI F, et al. A critical state based thermo-elasto-plastic constitutive model for structured clays[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9: 1094-103. doi: 10.1016/j.jrmge.2017.09.002
    [9]
    SULTAN N., DELAGE P, CUI, Y. J. Temperature effects on the volume change behaviour of Boom clay[J]. Engineering Geology, 2002, 64(2/3): 135-145.
    [10]
    王宽君, 洪义, 王立忠, 等. 不排水升温条件下黏性土孔压响应[J]. 岩石力学与工程学报, 2017, 36(9): 2288-2296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709022.htm

    WANG Kuanjun, HONG Yi, WANG Lizhong, et al. Effect of heating on the excess pore water pressure of clay under undrained condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2288-2296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709022.htm
    [11]
    HUECKEL T, BORESTTO M. Thermoplasticity of saturated soils and shales: constitutive equations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1990, 116(12): 1765-1777. doi: 10.1061/(ASCE)0733-9410(1990)116:12(1765)
    [12]
    ABUEL-NAGA H M, BERGADO D T, BOUAZZA A, et al. Thermomechanical model for saturated clays[J]. Géotechnique, 2009, 59: 273-280. doi: 10.1680/geot.2009.59.3.273
    [13]
    LI H, KONG G, WEN L, YANG Q. Pore Pressure and strength behaviors of reconstituted marine sediments involving thermal effects[J]. International Journal of Geomechanic, 2021, 21(4): 06021008. doi: 10.1061/(ASCE)GM.1943-5622.0001984
    [14]
    费康, 周莹, 付长郓. 温度对饱和黏性土剪切特性影响的试验研究[J]. 岩土工程学报, 2020, 42(9): 1679-1686. doi: 10.11779/CJGE202009012

    FEI Kang, ZHOU Ying, FU Changyun. Experimental study on effect of temperature on shear behavior of saturated clays[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1679-1686. (in Chinese) doi: 10.11779/CJGE202009012
    [15]
    刘功勋. 复杂应力条件下饱和海洋土剪切特性研究[D]. 大连: 大连理工大学, 2010.

    LIU Gongxun. Study on Shear Characteristics of Saturated Marine Soil under Complex Stress Conditions[D]. Dalian: Dalian University of Technology, 2010. (in Chinese)
    [16]
    刘功勋, 栾茂田, 郭莹, 等. 复杂应力条件下长江口原状饱和软黏土门槛循环应力比试验研究[J]. 岩土力学, 2010, 31(4): 1123-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201004024.htm

    LIU Gongxun, LUAN Maotian, GUO Ying, et al. Experimental study of threshold cyclic stress ratio of undisturbed saturated soft clay in the Yangtze Estuary under complex stress conditions[J]. Rock and Soil Mechanics, 2010, 31(4): 1123-1129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201004024.htm
    [17]
    HSU C C, VUCETIC M. Threshold shear strain for cyclic pore-water pressure in cohesive soils[J]. Journal of Geotechnical and Geoenviromental Engineering, 2006, 132(10): 1325-1335. doi: 10.1061/(ASCE)1090-0241(2006)132:10(1325)
    [18]
    MATSUI T, OHARA H, ITO T. Cyclic stress-strain history and shear characteristic of clay[J]. Journal of Geotechnical and Geoenviromental Engineering, 1980, 10(8): 1101-1119.
    [19]
    ISHIHARA K, OKADA S. Effect of stress history on cyclic behavior of sand[J]. Soils and Foundations, 1978, 18(4): 29-45.
    [20]
    OHARA S, MATSUDA H. Study on the settlement of saturated clay layer Induced by cyclic shear[J]. Soils and Foundations, 1988, 28(3): 103-113. doi: 10.3208/sandf1972.28.3_103
    [21]
    土的工程分类标准: GB/T50145——2007[S]. 北京: 中国计划出版社, 2007

    Standard for Engineering Classification of Soil: GB/T50145——2007[S]. Beijing: China Planning Press, 2007. (in Chinese)
    [22]
    RONG X N, XU R Q, LU J Y. Physical derivation of effective stress from balance law and experimental evidence[J]. International Journal of Geomechanic, 2017, 17(9): 04017064. doi: 10.1061/(ASCE)GM.1943-5622.0000953
    [23]
    POLEVOY S. Water Science and Engineering[M]. London: Blackie Academic & Professional, 1996.
    [24]
    SKEMPTON A W. The Pore-pressure coefficients A and B[J]. Géotechnique, 1954, 4(4): 143-147. doi: 10.1680/geot.1954.4.4.143
    [25]
    LAREW H G, LEONARDS G A. A repeated load strength criterion[C]// Proceeding 41 Highway Research Board, Washington D C, 1962: 529-556.
    [26]
    VUCETIC M, DOBRY R. Degartion of marine clays under cyclic loading[J]. Journal of Geotechnical Engineering, 1988, 144(2): 133-14.

Catalog

    Article views (254) PDF downloads (67) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return