Citation: | SUN Anyuan, YANG Gang, REN Yubin, KONG Gangqiang, YANG Qing. Undrained heating effects on monotonic shear behaviors and critical cyclic stress ratios of deep-sea sediment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2110-2118. DOI: 10.11779/CJGE20220892 |
[1] |
SUN A Y, YANG G, YANG Q, et al. Experimental investigation of thermo-mechanical behaviors of deep-sea clay from the South China Sea[J]. Applied Ocean Resarch, 2022, 119: 103015. doi: 10.1016/j.apor.2021.103015
|
[2] |
REN Y, YANG S, ZHANG S, et al. Experimental study on the thixotropic strength recovery and microstructural evolution of marine clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(8): 040220529.
|
[3] |
LI H, KONG G, YANG Q. Thermal effects on the dynamic properties of marine sediment under long-term low cyclic stress[J]. Applied Ocean Resarch, 2020, 104: 102361. doi: 10.1016/j.apor.2020.102361
|
[4] |
FANG J C, KONG G Q, YANG Q. Group performance of energy piles under cyclic and variable thermal loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2022, 148(8): 04022060. doi: 10.1061/(ASCE)GT.1943-5606.0002840
|
[5] |
GRAHAM J, TANAKA N, CRILLY T, et al. Modified Cam-Clay modelling of temperature effects in clays[J]. Canadian Geotechnical Journal, 2001, 38(3): 608-621. doi: 10.1139/t00-125
|
[6] |
ABUEL-NAGA H M, BERGADO D T, RAMANA G V, et al. Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006; 132: 902-10. doi: 10.1061/(ASCE)1090-0241(2006)132:7(902)
|
[7] |
YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2019, 41: 1050-1057.
|
[8] |
HAMIDIA, TOURCHI S, KARDOONI F, et al. A critical state based thermo-elasto-plastic constitutive model for structured clays[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9: 1094-103. doi: 10.1016/j.jrmge.2017.09.002
|
[9] |
SULTAN N., DELAGE P, CUI, Y. J. Temperature effects on the volume change behaviour of Boom clay[J]. Engineering Geology, 2002, 64(2/3): 135-145.
|
[10] |
王宽君, 洪义, 王立忠, 等. 不排水升温条件下黏性土孔压响应[J]. 岩石力学与工程学报, 2017, 36(9): 2288-2296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709022.htm
WANG Kuanjun, HONG Yi, WANG Lizhong, et al. Effect of heating on the excess pore water pressure of clay under undrained condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2288-2296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709022.htm
|
[11] |
HUECKEL T, BORESTTO M. Thermoplasticity of saturated soils and shales: constitutive equations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1990, 116(12): 1765-1777. doi: 10.1061/(ASCE)0733-9410(1990)116:12(1765)
|
[12] |
ABUEL-NAGA H M, BERGADO D T, BOUAZZA A, et al. Thermomechanical model for saturated clays[J]. Géotechnique, 2009, 59: 273-280. doi: 10.1680/geot.2009.59.3.273
|
[13] |
LI H, KONG G, WEN L, YANG Q. Pore Pressure and strength behaviors of reconstituted marine sediments involving thermal effects[J]. International Journal of Geomechanic, 2021, 21(4): 06021008. doi: 10.1061/(ASCE)GM.1943-5622.0001984
|
[14] |
费康, 周莹, 付长郓. 温度对饱和黏性土剪切特性影响的试验研究[J]. 岩土工程学报, 2020, 42(9): 1679-1686. doi: 10.11779/CJGE202009012
FEI Kang, ZHOU Ying, FU Changyun. Experimental study on effect of temperature on shear behavior of saturated clays[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1679-1686. (in Chinese) doi: 10.11779/CJGE202009012
|
[15] |
刘功勋. 复杂应力条件下饱和海洋土剪切特性研究[D]. 大连: 大连理工大学, 2010.
LIU Gongxun. Study on Shear Characteristics of Saturated Marine Soil under Complex Stress Conditions[D]. Dalian: Dalian University of Technology, 2010. (in Chinese)
|
[16] |
刘功勋, 栾茂田, 郭莹, 等. 复杂应力条件下长江口原状饱和软黏土门槛循环应力比试验研究[J]. 岩土力学, 2010, 31(4): 1123-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201004024.htm
LIU Gongxun, LUAN Maotian, GUO Ying, et al. Experimental study of threshold cyclic stress ratio of undisturbed saturated soft clay in the Yangtze Estuary under complex stress conditions[J]. Rock and Soil Mechanics, 2010, 31(4): 1123-1129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201004024.htm
|
[17] |
HSU C C, VUCETIC M. Threshold shear strain for cyclic pore-water pressure in cohesive soils[J]. Journal of Geotechnical and Geoenviromental Engineering, 2006, 132(10): 1325-1335. doi: 10.1061/(ASCE)1090-0241(2006)132:10(1325)
|
[18] |
MATSUI T, OHARA H, ITO T. Cyclic stress-strain history and shear characteristic of clay[J]. Journal of Geotechnical and Geoenviromental Engineering, 1980, 10(8): 1101-1119.
|
[19] |
ISHIHARA K, OKADA S. Effect of stress history on cyclic behavior of sand[J]. Soils and Foundations, 1978, 18(4): 29-45.
|
[20] |
OHARA S, MATSUDA H. Study on the settlement of saturated clay layer Induced by cyclic shear[J]. Soils and Foundations, 1988, 28(3): 103-113. doi: 10.3208/sandf1972.28.3_103
|
[21] |
土的工程分类标准: GB/T50145——2007[S]. 北京: 中国计划出版社, 2007
Standard for Engineering Classification of Soil: GB/T50145——2007[S]. Beijing: China Planning Press, 2007. (in Chinese)
|
[22] |
RONG X N, XU R Q, LU J Y. Physical derivation of effective stress from balance law and experimental evidence[J]. International Journal of Geomechanic, 2017, 17(9): 04017064. doi: 10.1061/(ASCE)GM.1943-5622.0000953
|
[23] |
POLEVOY S. Water Science and Engineering[M]. London: Blackie Academic & Professional, 1996.
|
[24] |
SKEMPTON A W. The Pore-pressure coefficients A and B[J]. Géotechnique, 1954, 4(4): 143-147. doi: 10.1680/geot.1954.4.4.143
|
[25] |
LAREW H G, LEONARDS G A. A repeated load strength criterion[C]// Proceeding 41 Highway Research Board, Washington D C, 1962: 529-556.
|
[26] |
VUCETIC M, DOBRY R. Degartion of marine clays under cyclic loading[J]. Journal of Geotechnical Engineering, 1988, 144(2): 133-14.
|