• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Peng-fei, FENG Guo-rui, ZHAO Jing-li, CHUGH Yoginder P, WANG Zhi-qiang. Effect of longwall gob on distribution of mining-induced stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1237-1246. DOI: 10.11779/CJGE201807010
Citation: WANG Peng-fei, FENG Guo-rui, ZHAO Jing-li, CHUGH Yoginder P, WANG Zhi-qiang. Effect of longwall gob on distribution of mining-induced stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1237-1246. DOI: 10.11779/CJGE201807010

Effect of longwall gob on distribution of mining-induced stress

More Information
  • Received Date: April 02, 2017
  • Published Date: July 24, 2018
  • With the development of a variety of gateroads within or close to gob, the effect of gob on the distribution of mining-induced stress is increasingly important. In view of the fact that the studies in this respect are few, Zhenchengdi colliery is investigated through theoretical analysis, physical modelling, numerical modelling and field observation. Several research means show that the more load the gob bears, the less the abutment pressure and vice versa. The longwall mining with split-level gateroad (LMSG) has an asymmetrical panel geometry, which results in asymmetrical stress distribution. It has larger gob stress and smaller abutment stress on elevating section side and smaller gob stress and larger abutment stress on non-elevating section side. The caved rock cushion is conductive to avoiding dynamic ground pressure behavior for the LMSG gob-side entry. The method for calculating the subsidence and rotation of the key blocks based on gob effect is obtained. The smaller the angle of break, the smaller the gob pressure and the smaller the gob edge pressure. The gob affects the stress concentration degree, the area and location of the stress concentration zones as well as the area of the yielded zone. The theoretical analysis, physical modelling, numerical modelling and field observation have a good consistency.
  • [1]
    PENG S S.Longwall mining[M]. 2nd ed. Morgantown: West Virgina University, 2006.
    [2]
    钱明高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社, 2010.
    (QIAN Ming-gao, SHI Ping-wu, XU Jia-lin.Ground pressure and strata control[M]. Xuzhou: China University of Mining and Technology Press, 2010. (in Chinese))
    [3]
    张俊英, 蔡美峰, 张青. 采空区地表新增荷载后地基应力的分布规律研究[J]. 岩土工程学报, 2010, 32(7): 1096-1100.
    (ZHANG Jun-ying, CAI Mei-feng, ZHANG Qing.Distribution laws of ground stress after newly increased load on surface above mined-out areas[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1096-1100. (in Chinese))
    [4]
    YAVUZ H.An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines[J]. International Journal of Rock Mechanics and Mining Science, 2004, 41: 193-205.
    [5]
    徐光, 许家林, 吕维赟, 等. 采空区顶板导水裂隙侧向边界预测及应用研究[J]. 岩土工程学报, 2010, 32(5): 724-730.
    (XU Guang, XU Jia-lin, LÜ Wei-yun, et al.Lateral boundary prediction of water conducting fracture formed in roof and its application[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 724-730. (in Chinese))
    [6]
    万虹. 地下空区稳定性的相似模拟研究[J]. 岩土工程学报, 1998, 20(6): 74-77.
    (WAN Hong.Similar imitation research on ground empty stope stability[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(6): 74-77. (in Chinese))
    [7]
    王朋飞, 赵景礼, 王志强, 等. 非充分采动采空区与煤岩柱(体)耦合作用机制及应用[J]. 岩石力学与工程学报, 2017, 36(5): 1185-1200.
    (WANG Peng-fei, ZHAO Jing-li, WANG Zhi-qiang.Mechanism of gob-pillar interaction for subcritical panels and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1185-1200. (in Chinese))
    [8]
    来兴平, 蔡美峰, 任奋华. 河下开采扰动诱致采空区动态失稳定量预计与综合评价[J]. 岩土工程学报, 2005, 27(12): 1421-1424.
    (LAI Xing-ping, CAI Mei-feng, REN Fen-hua.Quantitative prediction and comprehensive evaluation on dynamic destabilization of LSMA due to excavation disturbance underneath river[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1421-1424. (in Chinese))
    [9]
    张清峰, 王东权. 强夯法加固煤矸石地基动应力模型试验研究[J]. 岩土工程学报, 2012, 34(6): 1142-1147.
    (ZHANG Qing-feng, WANG Dong-quan.Model tests on dynamic stress in colliery wastes improved by dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1142-1147. (in Chinese))
    [10]
    方勇, 姚志刚, 符亚鹏, 等. 上覆水平煤层采空区衬砌受荷模型试验研究[J]. 岩土工程学报, 2016, 38(8): 1513-1521. FANG Yong, YAO Zhi-gang, FU Ya-peng, et al. Model tests on loading characteristics of linings in overlying horizontal coal mined-out area[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1513-1521. (in Chinese))
    [11]
    蔡美峰, 来兴平. 岩石基复合材料支护采空区动力失稳声发射特征统计分析[J]. 岩土工程学报, 2003, 25(1): 51-54.
    (CAI Mei-feng, LAI Xing-ping.Statistical analysis of the character of acoustic emission for nonlinear dynamical damage in mined out areas supported by composite rock materials[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(1): 51-54. (in Chinese))
    [12]
    缪协兴, 茅献彪, 胡光伟, 等. 岩石(煤)的碎胀与压实特性研究[J]. 实验力学, 1997, 12(3): 394-400.
    (MIAO Xie-xing, MAO Xian-biao, HU Guang-wei, et al.Bulking and compaction characteristics of rock (coal)[J]. Journal of Experimental Mechanics, 1997, 12(3): 394-400. (in Chinese))
    [13]
    臧亚君, 刘东燕, 彭文轩, 等. 重庆矿区矸石山体特性现场试验研究[J]. 岩土工程学报, 2009, 31(4): 558-563.
    (ZANG Ya-jun, LIU Dong-yan, PENG Wen-xuan, et al.Field tests on coal wastes in Chongqing[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 558-563. (in Chinese))
    [14]
    刘松玉, 童立元, 邱钰, 等. 煤矸石颗粒破碎及其对工程力学特性影响研究[J]. 岩土工程学报, 2005, 27(5): 505-510.
    (LIU Song-yu, TONG Li-yuan, QIU Yu, et al.Crushable effects on engineering mechanical properties of colliery wastes[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 505-510. (in Chinese))
    [15]
    PAPPAS D M, MARK C.Behavior of simulated longwall gob material[M]. US Department of the Interior, Bureau of Mines, 1993.
    [16]
    谢和平, 周宏伟, 刘建锋, 等. 不同开采条件下采动力学行为研究[J]. 煤炭学报, 2011, 36(7): 1067-1074.
    (XIE He-ping, ZHOU Hong-wei, LIU Jian-feng, et al.Mining-induced mechanical behavior in coal seams under different mining layouts[J]. Journal of China Coal Society, 2011, 36(7): 1067-1074. (in Chinese))
    [17]
    余伟健, 王卫军, 文国华, 等. 深井复合顶板煤巷变形机理及控制对策[J]. 岩土工程学报, 2012, 34(8): 1501-1508.
    (YU Wei-jian, WANG Wei-jun, WEN Guo-hua, et al.Deformation mechanism and control technology of coal roadway under deep well and compound roof[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1501-1508. (in Chinese))
    [18]
    WANG P F, ZHAO J L, CHUGH Y P, et al.A novel longwall mining layout approach for extraction of deep coal deposits[J]. Minerals, 2017, 7(4): 60.
    [19]
    FENG G R, WANG P F, CHUGH Y P, et al.A new gob-side entry layout for longwall top coal caving[J]. Energies, 2018, 11(5): 1292.
    [20]
    赵景礼, 吴健. 厚煤层错层位巷道布置采全厚采煤法:中国, ZL98100544.6[P].1998-08-09. (ZHAO Jing-li. Whole seam longwall mining with split-level gate roads (LMSG) in thick coal seams: China, ZL98100544.6[P]. 1998-08-09. (in Chinese))
    [21]
    赵景礼. 厚煤层全高开采的三段式回采工艺: 中国, 2004100395750[P].2004-10-03. (ZHAO Jing-li. Triple sections mining technology (TSMT) in LMSG in thick coal seams: China, 2004100395750[P]. 2004-10-03. (in Chinese))
    [22]
    赵景礼. 厚煤层错层位巷道布置采全厚采煤法的研究[J]. 煤炭学报, 2004, 29(2): 142-145.
    (ZHAO Jing-li.Study on whole seam longwall mining with split-level gateroad[J]. Journal of China Coal Society, 2004, 29(02): 142-145. (in Chinese))
    [23]
    张俊文, 赵景礼, 王志强. 近距残煤综放复采顶煤损伤与冒放性控制[J]. 煤炭学报, 2010, 35(11): 1854-1858.
    (ZHANG Jun-wen, ZHAO Jing-li, WANG Zhi-qiang.Top coal damage and caving characterizes control of residual coal repeated mining adopted longwall top-coal caving in contiguous seams[J]. Journal of China Coal Society, 2010, 35(11): 1854-1858. (in Chinese))
    [24]
    康红普, 王金华, 林健. 煤矿巷道锚杆支护应用实例分析[J]. 岩石力学与工程学报, 2010, 29(4): 649-664.
    (KANG Hong-pu, WANG Jin-hua, LIN Jian.Case studies of rock bolting in coal mine roadways[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4): 649-664. (in Chinese))
    [25]
    白兰永. 冒落矸石自行充填沿空巷道矿压显现规律研究[J]. 金属矿山, 2011(6): 63-66.
    (BAI Lan-yong.Research on the underground pressure behavior laws of reserving space for lane along the tunnel by self-filling with breakage wastes[J]. Metal Mine, 2011(6): 63-66. (in Chinese))
    [26]
    何满潮, 高玉兵, 杨军, 等. 无煤柱自成巷聚能切缝技术及其对围岩应力演化的影响研究[J]. 岩石力学与工程学报, 2017, 36(6): 1314-1325.
    (HE Man-chao, GAO Yu-bing, YANG Jun, et al.The energy-gathered roof cutting technique in non-pillar mining and its impact on stress evolution of surrounding rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1314-1325. (in Chinese))
    [27]
    ESTERHUIZEN G S, KARACAN C Ö.A methodology for determining gob permeability distributions and its application to reservoir modeling of coal mine longwalls[C]// SME 2007 Annual Meeting. 2007: 07-078.
    [28]
    TAN Y L, YU F H, NING J G, et al.Design and construction of entry retaining wall along a gob side under hard roof stratum[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77: 115-121.
    [29]
    YANG H, CAO S, LI Y, et al.Soft roof failure mechanism and supporting method for gob-side entry retaining[J]. Minerals, 2015(10): 707-722.
    [30]
    SHABANIMASHCOOL M, LI CC.Numerical modelling of longwall mining and stability analysis of the gates in a coal mine[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 51: 24-34.
    [31]
    QIAO Jian-yong.Julia sets and complex singularities of free energies[J]. Memoirs of the American Mathematical Society, 2014, 234(1102): 1.
    [32]
    QIAO J Y.On the preimages of parabolic periodic points[J]. Nonlinearity, 2000, 13(3): 813-818.
    [33]
    蒋金泉. 采场围岩应力与运动[M]. 北京:煤炭工业出版社, 1993: 15-75.
    (JIANG Jin-quan.Stress and movenment of surrounding rock around the stope[M]. Beijing: China Coal Industry Publishing House, 1993: 15-75. (in Chinese))
    [34]
    Itasca Consulting Group Inc. Fast Lagrangian analysis of continua in 3 dimension, version 5.0 user’s guide[M]. Minnesota: Minneapolis, 2012.
  • Related Articles

    [1]HUANG Juehao, QIU Yuefeng, WU Jiaming, LI Yinan, CHEN Jian, FU Xiaodong. Experimental study on coupling effects of cyclic confining pressure and intermittent cyclic loading on deformation behavior of saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 48-52. DOI: 10.11779/CJGE2024S10009
    [2]Effect of initial static shear stress and cyclic loading direction on the liquefaction behavior of saturated dense sand[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240591
    [3]HUANG Juehao, WANG Hongchao, CHEN Jian, FU Xiaodong, YAN Xiaoling, MA Chao. Effects of intermittent cyclic loading with cyclic confining pressure on deformation behaviors of saturated clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 67-70. DOI: 10.11779/CJGE2023S10038
    [4]SUN Anyuan, YANG Gang, REN Yubin, KONG Gangqiang, YANG Qing. Undrained heating effects on monotonic shear behaviors and critical cyclic stress ratios of deep-sea sediment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2110-2118. DOI: 10.11779/CJGE20220892
    [5]HUANG Jue-hao, WANG Ying-wu, CHEN Jian, LIU Fu-sheng, HOU Feng, FU Xiao-dong, MA Chao. Experimental study on deformation behaviors of overconsolidated clay under cyclic confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 245-248. DOI: 10.11779/CJGE2021S2058
    [6]HUANG Jue-hao, CHEN Jian, KE Wen-hui, ZHONG Yu, QIU Yue-feng. Coupling effects of bidirectional cyclic loading and loading frequency on pore water pressure of saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 71-74. DOI: 10.11779/CJGE2017S2018
    [7]WANG Yuan-zhan, LEI Ji-chao, LI Qing-mei, HU Shen-rong. Post-cyclic strength degradation behavior of soft clay under anisotropic consolidation and numerical simulation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1557-1564. DOI: 10.11779/CJGE201709002
    [8]WANG Jun, WANG Pan, LIU Fei-yu, HU Xiu-qing, CAI Yuan-qiang. Cyclic and post-cyclic direct shear behaviors of geogrid-sand interface with different soil densities[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 342-349. DOI: 10.11779/CJGE201602019
    [9]ZHENG Gang, HUO Hai-feng, LEI Hua-yang. Undrained strength characteristics of saturated undisturbed and remolded silty clay after cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 400-408.
    [10]Stress and deformation behaviors of rockfill under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
  • Cited by

    Periodical cited type(7)

    1. 郝鹏 ,杨浩 ,冯少军 ,王博 . 高置信水平结构逆可靠度分析与优化方法研究进展. 力学学报. 2024(02): 310-326 .
    2. 王钰轲,邵琳岚,万愉快,余翔,张蓓,钟燕辉. 基于K-L展开法考虑土体参数空间变异性的土石坝坝坡可靠度分析. 水利学报. 2024(12): 1417-1427 .
    3. 孙良鑫. 基覆面形式对堆积体边坡失效风险影响分析. 金属矿山. 2023(06): 184-191 .
    4. 韩非,胡超. 基于滑移线场理论的概率边坡设计. 科学技术与工程. 2023(20): 8771-8779 .
    5. 曹子君,周强,李典庆. 边坡稳定确定性设计与可靠度设计的安全判据等价性充分条件. 岩土工程学报. 2023(08): 1703-1712 . 本站查看
    6. 吴兴征,刘赫. 土工构筑物的逆几何可靠性分析算法. 土木与环境工程学报(中英文). 2023(05): 106-115 .
    7. 王涛,马骏,周国庆,许大晴,季雨坤. 冻土地层三维空间变异性表征及冻结帷幕温度特征值演化过程研究. 岩石力学与工程学报. 2022(10): 2094-2108 .

    Other cited types(9)

Catalog

    Article views (293) PDF downloads (214) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return