• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZUO Zi-bo, HUANG Yu-lin, WU Xiao-jian. Back analysis of construction of large deep excavations using intelligent optimization algorithm[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 128-131. DOI: 10.11779/CJGE2017S2032
Citation: ZUO Zi-bo, HUANG Yu-lin, WU Xiao-jian. Back analysis of construction of large deep excavations using intelligent optimization algorithm[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 128-131. DOI: 10.11779/CJGE2017S2032

Back analysis of construction of large deep excavations using intelligent optimization algorithm

More Information
  • Received Date: August 01, 2017
  • Published Date: December 19, 2017
  • By introducing the artificial intelligence technology, on improved Nelder-Mead acceleration algorithm based on the neural network is proposed to obtain better optimization results. A back analysis method for construction of large deep excavations using field observations is established. 3D numerical simulation analyses using the intelligent optimization technique are performed to forecast the horizontal deformation of the wall, axial force of the supports and displacement of the adjacent energy supply pipelines at later stages based on the background of excavation with an area of 93383. The results show that the convergence of the calculation is faster using the proposed method, and the number of iterations decreases by up to 86.9% compared with that of the Nelder-Mead algorithm. The predicted results are in good agreement with the monitoring data.
  • [1]
    侯学渊, 刘国彬, 黄院雄. 城市基坑工程发展的几点看法[J]. 施工技术, 2000, 29(1): 5-7. (HOU Xue-yuan, LIU Guo-bin, HUANG Yuan-xiong. Several views on the development of urban foundation work[J]. Construction Technology, 2000, 29(1): 5-7. (in Chinese))
    [2]
    HASHASH Y M A, LEVASSEUR S, OSOULI A, et al. Comparison of two inverse analysis techniques for learning deep excavation response[J]. Computers and Geotechnics, 2010(37): 323-333.
    [3]
    邓子胜. 基于径向基神经网络的深基坑非线性位移反分析[J]. 岩土工程学报, 2005, 27(5): 554-557. (DENG Zi-sheng. Nonlinear displacement back-analysis for deep excavation based on radial basis neural network[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 554-557. (in Chinese))
    [4]
    JUANG C H, LUO Z, ATAMTURKTUR S, et al. Bayesian updating of soil parameters for braced excavations using field observations[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2013, 139(3): 395-406.
    [5]
    MURAKAMI A. The role of Kalman filtering in an inverse analysis of elasto-plastic material[J]. Proceedings of the Japan Academy, 2002, 78(B): 250-255.
    [6]
    贾善坡, 陈卫忠, 谭贤君, 等.大岗山水电站地下厂房区初始地应力场Nelder-Mead 优化反演研究[J]. 岩土力学, 2008, 29(9): 2341-2348. (JIA Shan-po, CHEN Wei-zhong, TAN Xian-jun, et al. Nelder-Mead algorithm for inversion analysis of in-situ stress field of underground powerhouse area of Dagangshan Hydropower Station[J]. Rock and Soil Mechanics, 2008, 29(9): 2341-2348. ( in Chinese))
    [7]
    彭军龙, 张学民, 阳军生, 等. 地铁深基坑支护的遗传神经网络位移反分析[J]. 岩土力学, 2007, 28(10): 2118-2122. (PENG Jun-long, ZHANG Xue-min, YANG Jun-sheng, et al. Displacement back analysis of deep foundation pit for metro based on genetic algorithm and neural network[J]. Rock and Soil Mechanics, 2007, 28(10): 2118-2122. (in Chinese))
    [8]
    OBRZUD R F, TRUTY A, VULLIET L. Numerical modeling and neural networks to identify model parameters from piezocone tests: Ⅱ Multi-parameter identification from piezocone data[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(6):743-779.
  • Related Articles

    [1]WANG Cai-jin, ZHANG Tao, LUO Jun-hui, MA Chong, DUAN Long-chen. Utilization of neural network feedback method to prediction of thermal resistivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 109-112. DOI: 10.11779/CJGE2019S2028
    [2]GAO Jie, ZHU Shi-min, CHEN Chang-fu. RBF neural network based creep model of red clay-anchor interface[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 122-126. DOI: 10.11779/CJGE2018S2025
    [3]LI Duanyou, GAN Xiaoqing, ZHOU Wu. Back analysis on mechanical parameters of dams based on uniform design and genetic neural network[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 125-130.
    [4]DENG Zisheng. Nonlinear displacement back-analysis for deep excavation based on radial basis neural network[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 554-557.
    [5]ZHOU Jianping, YAN Shuwang. Artificial neural networksbased-model for forecasting critical height of GRW[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 782-786.
    [6]CHEN Haijun, LI Nenghui, NIE Dexin, SHANG Yuequan. A model for prediction of rockburst by artificial neural network[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 229-232.
    [7]ZHU Chuanqu, MIAO Xiexing, XIE Donghai. A model for optimization of support patterns of soft rock roadway based on neural network[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 708-710.
    [8]WANG Shuhong, HAO Zhe. The genetic algorithm-neural network method to forecast the miniature crack grouting in rock matrix[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 572-575.
    [9]Liu Haowu, Cai Desuo. A neural network model of rock blasting earthquake effects in the Three Gorges project[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 18-21.
    [10]Cai Yudong, Gong Jiawen, Yao Linsheng. Artificial Neural Network Model for Prediction of Liquefaction of Sandy Soil[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(6): 53-58.
  • Cited by

    Periodical cited type(8)

    1. 薛阳,苗发盛,吴益平,温韬,王艳昆. 土体本构模型参数的不确定性评估研究. 岩土力学. 2024(09): 2797-2807 .
    2. 张卫杰,陈洪鑫,陈宇,姬建. 内摩擦角空间变异性对大型滑坡滑动距离的影响. 岩土力学. 2024(11): 3388-3398 .
    3. 胡金政,张洁,黄宏伟,郑建国. 边坡勘察钻孔信息价值评价及优化布置方法. 地球科学. 2023(05): 1977-1988 .
    4. 葛一荀,张洁,黄宏伟. 基于决策树的液化勘察信息价值评估研究. 地震工程与工程振动. 2023(04): 190-203 .
    5. 柳彤晖,豆红强,纪歆雅. 基于马尔可夫链理论考虑土层变异性的边坡随机场模型. 水利与建筑工程学报. 2021(03): 111-116 .
    6. 陶袁钦,孙宏磊,蔡袁强. 考虑约束的贝叶斯概率反演方法. 岩土工程学报. 2021(10): 1878-1886 . 本站查看
    7. 崔武峰,胡军国,黄彤凯,朱振凯,罗煦钦,胡玉林. 基于贝叶斯估计的土壤呼吸传感器最优高度点搜索研究. 传感技术学报. 2020(12): 1742-1751 .
    8. 闫韦. 关于岩土工程勘察中常见问题及改进措施研究. 城市建设理论研究(电子版). 2019(05): 98 .

    Other cited types(6)

Catalog

    Article views (362) PDF downloads (246) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return