Citation: | TAO Yuan-qin, SUN Hong-lei, CAI Yuan-qiang. Bayesian back analysis considering constraints[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1878-1886. DOI: 10.11779/CJGE202110014 |
[1] |
WANG L, HWANG J H, LUO Z, et al. Probabilistic back analysis of slope failure -a case study in taiwan[J]. Computers and Geotechnics, 2013, 51: 12-23. doi: 10.1016/j.compgeo.2013.01.008
|
[2] |
蒋水华, 刘贤, 尧睿智, 等. 基于贝叶斯更新和信息量分析的边坡钻孔布置方案优化设计方法[J]. 岩土工程学报, 2018, 40(10): 1871-1879. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810016.htm
JIANG Shui-hua, LIU Xian, YAO Rui-zhi, et al. Optimization design approach for layout scheme of slope boreholes based on Bayesian updating and value of information analysis[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1871-1879. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810016.htm
|
[3] |
郑栋, 黄劲松, 李典庆. 基于多源信息融合的路堤沉降预测方法[J]. 岩土力学, 2019, 40(2): 709-727. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902034.htm
ZHENG Dong, HUANG Jin-song, LI Dian-qing. An approach for predicting embankment settlement by integrating multi-source information[J]. Rock and Soil Mechanics, 2019, 40(2): 709-727. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902034.htm
|
[4] |
LO M K, LEUNG Y F. Bayesian updating of subsurface spatial variability for improved prediction of braced excavation response[J]. Canadian Geotechnical Journal, 2019, 56(8): 1169-1183. doi: 10.1139/cgj-2018-0409
|
[5] |
CAO Z J, WANG Y. Bayesian approach for probabilistic site characterization using cone penetration tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 267-276. doi: 10.1061/(ASCE)GT.1943-5606.0000765
|
[6] |
CAI Y, LI J, LI X, et al. Estimating soil resistance at unsampled locations based on limited CPT data[J]. Bulletin of Engineering Geology and the Environment, 2018, 78(5): 3637-3648.
|
[7] |
HASHASH Y M A, LEVASSEUR S, OSOULI A, et al. Comparison of two inverse analysis techniques for learning deep excavation response[J]. Computers and Geotechnics, 2010, 37(3): 323-333. doi: 10.1016/j.compgeo.2009.11.005
|
[8] |
YIN Z Y, JIN Y F, SHEN J S, et al. Optimization techniques for identifying soil parameters in geotechnical engineering: Comparative study and enhancement[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(1): 70-94. doi: 10.1002/nag.2714
|
[9] |
ZHAO B D, ZHANG L L, JENG D S, et al. Inverse analysis of deep excavation using differential evolution algorithm[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(2): 115-134. doi: 10.1002/nag.2287
|
[10] |
蒋水华, 刘源, 张小波, 等. 有限数据条件下空间变异岩土力学参数随机反演分析及比较[J]. 岩石力学与工程学报, 2020, 39(6): 190-201. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006017.htm
JIANG Shui-hua, LIU Yuan, ZHANG Xiao-bo, et al. Stochastic back analysis and comparison of spatially varying geotechnical mechanical parameters based on limited data[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 190-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006017.htm
|
[11] |
田密, 李典庆, 曹子君, 等. 基于贝叶斯理论的土性参数空间变异性量化方法[J]. 岩土力学, 2017, 38(11): 3355-3362. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711036.htm
TIAN Mi, LI Dian-qing, CAO Zi-jun, et al. Quantification of spatial variability of soil parameters using Bayesian approaches[J]. Rock and Soil Mechanics, 2017, 38(11): 3355-3362. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711036.htm
|
[12] |
QI X H, ZHOU W H. An efficient probabilistic back-analysis method for braced excavations using wall deflection data at multiple points[J]. Computers and Geotechnics, 2017, 85: 186-198. doi: 10.1016/j.compgeo.2016.12.032
|
[13] |
LI X Y, ZHANG L M, JIANG S H. Updating performance of high rock slopes by combining incremental time-series monitoring data and three-dimensional numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 83: 252-261. doi: 10.1016/j.ijrmms.2014.09.011
|
[14] |
SUN Y, HUANG J, JIN W, SLOAN S W, JIANG Q. Bayesian updating for progressive excavation of high rock slopes using multi-type monitoring data[J]. Engineering Geology, 2019, 252: 1-13. doi: 10.1016/j.enggeo.2019.02.013
|
[15] |
XIAO H, CINNELLA P. Quantification of model uncertainty in RANS simulations: a review[J]. Progress in Aerospace Sciences, 2019, 108: 1-31. doi: 10.1016/j.paerosci.2018.10.001
|
[16] |
IGLESIAS M A, LAW K J H, STUART A M. Ensemble Kalman methods for inverse problems[J]. Inverse Probl, 2013, 29(4): 045001. doi: 10.1088/0266-5611/29/4/045001
|
[17] |
EVENSEN G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research, 1994, 99(C5): 10143-10162. doi: 10.1029/94JC00572
|
[18] |
HOMMELS A, MURAKAMI A, NISHIMURA S I. Comparison of the Ensemble Kalman Filter with the Unscented Kalman Filter: Application to the Construction of A Road Embankment[M]. 19th European Young Geotechnical Engineers Conference, 2008, Gyor.
|
[19] |
LIU K, VARDON P J, HICKS M A. Sequential reduction of slope stability uncertainty based on temporal hydraulic measurements via the ensemble Kalman filter[J]. Computers and Geotechnics, 2018, 95: 147-161. doi: 10.1016/j.compgeo.2017.09.019
|
[20] |
TAO Y, SUN H, CAI Y. Predicting soil settlement with quantified uncertainties by using ensemble Kalman filtering[J]. Engineering Geology, 2020, 276: 105753. doi: 10.1016/j.enggeo.2020.105753
|
[21] |
EMERICK A A, REYNOLDS A C. History matching time-lapse seismic data using the ensemble Kalman filter with multiple data assimilations[J]. Computational Geosciences, 2012, 16(3): 639-659.
|
[22] |
ZHANG X, XIAO H, GOMEZ T, COUTIER-DELGOSHA O. Evaluation of ensemble methods for quantifying uncertainties in steady-state CFD applications with small ensemble sizes[J]. Computers & Fluids, 2020, 203: 104530.
|
[23] |
WANG D, CHEN Y, CAI X. State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter[J]. Water Resources Research, 2009, 45: 10.1029.
|
[24] |
ZHANG X L, MICHEL N, STR FER C, XIAO H. Regularized ensemble Kalman methods for inverse problems[J]. Journal of Computational Physics, 2020, 416: 109517.
|
[25] |
WU J, WANG J X, SHADDEN S C. Adding constraints to bayesian inverse problems[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 1666-1673.
|
[26] |
VRUGT J A. Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation[J]. Environmental Modelling & Software, 2016, 75: 273-316.
|
[27] |
李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004: 253-254.
LI Guang-xin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004: 253-254. (in Chinese)
|
[28] |
AZZOUZ A S, KRIZEK R J, COROTIS R B. Regression analysis of soil compressibility[J]. Soils & Foundations, 1976, 16(2): 19-29.
|
[29] |
何平, 王卫东, 徐中华. 上海黏土压缩指数和回弹指数经验关系[J]. 岩土力学, 2018, 39(10): 275-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810035.htm
HE Ping, WANG Wei-dong, XU Zhong-hua. Empirical correlations of compression index and swelling index for Shanghai clay[J]. Rock and Soil Mechanics, 2018, 39(10): 275-284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810035.htm
|
[30] |
武朝军. 上海浅部土层沉积环境及其物理力学性质[D]. 上海: 上海交通大学, 2016.
WU Chao-jun. Depositional Environment and Geotechnical Properties for the Upper Shanghai Clays[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
|