• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Zhong-ming, LI Shuang-long, DING Peng, FENG Shu-rong, ZHONG Hui-ya. Modes of hydro-geological structure for uplift deformation near reservoir pivot[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2026-2033. DOI: 10.11779/CJGE201711010
Citation: JIANG Zhong-ming, LI Shuang-long, DING Peng, FENG Shu-rong, ZHONG Hui-ya. Modes of hydro-geological structure for uplift deformation near reservoir pivot[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2026-2033. DOI: 10.11779/CJGE201711010

Modes of hydro-geological structure for uplift deformation near reservoir pivot

More Information
  • Received Date: May 27, 2016
  • Published Date: November 24, 2017
  • The uplift deformation phenomenon occurring in the dam due to reservoir impounding appears rarely. To explore the influences of the hydro-geological structure of the rock mass on the uplift deformation, the mode of the hydro-geological structure inducing the generation of uplift deformation near the dam area is put forward through the researches on the existing literatures. The relative impermeable layer inclination to the downstream under the dam foundation and the relative permeable layer lying beneath the impermeable layer are the necessary hydro-geological conditions for the generation of uplift deformation. A numerical method based on the hydro-mechanical coupling theory is employed to study the influences of the variation of attitude elements on the spatial distribution law of uplift deformation occurring near the dam. It is shown that the shorter the distance between the exposure site and the dam, the greater the uplift deformation value. With the increase of the dip angle of the impermeable layer, the maximum uplift deformation near the dam increases firstly and then decreases. It is also indicated that the spatial distribution position of the uplift deformation is directly determined by the variation of dip direction.
  • [1]
    BEREZINSKII S A, ENIKEEV F G, MAKSIMOV K I, et al. Condition of the concrete dam of the Toktogul hydroelectric station according to onsite observation data[J]. Power Technology and Engineering, 1985, 19(9): 470-478.
    [2]
    BERDICHEVSKII G, BRONSHTEIN V I, FRADKIN B V. Use of a mathematical modelfor interpreting data of on-site observations of the arch dam at the Inguri hydroelectric station[J]. Power Technology and Engineering, 1992, 26(10): 653-668.
    [3]
    BRONSHTEIN V I. State of the arch dam and foundation of the Inguri hydroelectric station[J]. Power Technology and Engineering, 1994, 28(2): 77-84.
    [4]
    张景秀. 韩凤禹. 高坝附近基岩的一些变位现象[J]. 大坝与安全, 1992, 19(1): 42-51. (ZHANG Jing-xiu, HAN Feng-yu. Deformation phenonmenon of rock mass in the foundation near high dam[J]. Dam and Safety, 1992, 19(1): 42-51. (in Chinese))
    [5]
    伍法权, 祁生文. 江垭水库大坝及近坝山体抬升变形机理 [J]. 岩土工程学报, 2003, 25(4): 449-454. (WU Fa-quan, QI Sheng-wen. Mechanism of uplift deformation of the dam foundation of Jiangya reservoir and the nearby mountains[J]. Journal of Geotechnical Engineering, 2003, 25(4): 449-454. (in Chinese))
    [6]
    张超萍, 王 东, 沈定斌, 等. 铜街子水电站右岸大 坝抬升原因浅析[J]. 长江科学院报, 2015, 32(5): 57-60. (ZHANG Chao-ping, WANG Dong, SHEN Ding-bin, et al. Causes of uplift deformation on the right bank of the dam of Tongjiezi hydropower Station[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(5): 57-60. (in Chinese))
    [7]
    王兰生, 金德濂, 骆诗栋. 江垭大坝山体抬升的形成机制与趋势分析[J]. 岩石力学与工程学报, 2007, 26(6): 1107-1115. (WANG Lan-sheng, JIN De-lian, LUO Shi-dong. Formation mechanism and trend analysis of lifting of valley and dam in Jiangya hydraulic project[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1107-1115. (in Chinese))
    [8]
    祁生文, 伍法权. 江垭水库大坝及近坝山体抬升发展趋势[J]. 岩土工程学报, 2004, 22(2): 259-262. (QI Sheng-wen, WU Fa-quan. Development of uplift deformation of dam foundation and surrounding mountains of Jiangya water power station[J]. Journal of Geotechnical Engineering, 2004, 22(2): 259-262. (in Chinese))
    [9]
    LIU X L, WANG S J, WANG E Z. Study on the uplift mechanism of Tongjiezi dam using a coupled hydro-mechanical model[J]. Engineering Geology, 2011, 117: 134-150.
    [10]
    YAN F Z, TU X B, LI G C. The uplift mechanism of the rock masses around the Jiangya dam after reservoir inundation, China[J]. Engineering Geology, 2004, 76: 141-154.
    [11]
    杨 威, 廖文嘉, 黄立波. 江垭大坝抬升资料分析及初步建模[J]. 水利信息化, 2011(5): 16-20. (YANG Wei, LIAO Wen-jia, HUAN Li-bo. Analysis of materials on lifting-up of rock mass and preliminary model establishment of Jiangya dam[J]. Water Resources Informatization, 2011, 5: 16-20. (in Chinese))
    [12]
    唐国进, 骆诗栋, 杨定华, 等. 江垭大坝及近坝山体抬升变形研究[J]. 水力发电学报, 2003(3): 9-12. (TANG Guo-jin, LUO Shi-dong, YANG Ding-hua, et al. Study on the uplift deformation of Jiangya Dam and its near-by mountainous body[J]. Journal of Hydroelectric Engineering, 2003(3): 9-12. (in Chinese))
    [13]
    凌玉标, 刘奇志. 江娅水库坝区岩体抬升变形分析[J]. 东北水利水电, 2003, 10(6): 8-9. (LING Yu-biao, LIU Qi-zhi. Deformable analysis of rock mass lift in Jiangya reservoir region[J]. Water Resources & Hydropower of Northeast China, 2003, 10(6): 8-9. (in Chinese))
    [14]
    COUSSY O, DORMIEUX L, DETOURNAY E. From mixture theory to Biot’s approach for porous media[J]. International Journal of Solids Structure, 1998, 24(23): 4619-4635.
    [15]
    梁 通, 金 峰. 基于广义有效应力原理的混凝土坝分析[J]. 水力发电学报, 2009, 28(2): 47-51. (LIANG Tong, JIN Feng. Analysis on concrete dams based on the concept of generalized effective stress[J]. Journal of Hydroelectric Engineering, 2009, 28(2): 47-51. (in Chinese))
    [16]
    谢 妮, 徐礼华, 邵建富, 等. 法向应力和水压力作用下岩石单裂隙水力耦合模型[J]. 岩石力学与工程学报, 2011, 30(增刊2): 3796-3803. (XIE Ni, XU Li-hua, SHAO Jian-fu, et al. Coupled hydro-mechanical modeling of rock fractures subject to both normal stress and fluid pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S2): 3796-3803. (in Chinese))
    第七届中国水利水电岩土力学与工程学术研讨会(1号征文通知)
    17 主办单位:中国水利学会岩土力学专业委员会。
    18 承办单位:湖南大学,中国电建集团中南勘测设计研究院有限公司,长沙理工大学,湖南科技大学,南京水利科学研究院,中国水利水电科学研究院,长江科学院,河海大学等。
    19 协办单位:《岩土工程学报》编辑部,《岩土力学》编辑部,《湖南大学学报》编辑部等。
    20 为了应对社会快速发展和解决能源短缺问题,我国水利水电基础建设仍然方兴未艾。与此同时,在“一带一路”国家战略的实施过程中,水利水电基础设施建设也将面临新的技术难题。为了深刻认识和深入探讨我国水利水电工程建设开发中遇到的新的岩土工程基础科学和建设技术问题,“第七届中国水利水电岩土力学与工程学术讨论会”定于2018年8月中下旬在湖南省长沙市举行,将以“一带一路”战略实施过程中的水利水电工程建设为背景,对我国近年来水利水电岩土工程和工程领域的最新技术开展广泛的学术交流。
    21 会议议题:①岩土体基本性质;②岩土工程物理与数值模拟技术;③水利水电工程建设与环境协调;④高坝及边坡工程;⑤隧道与地下洞室工程;⑥海洋岩土工程;⑦岩土工程中的新技术与新材料;⑧重大岩土工程实录;⑨“一带一路”战略实施中的水利水电岩土工程。
  • Related Articles

    [1]SUN Hui, LI Congan, LI Bo, WANG Zhipeng. Stresses and deformations of support structures of deep foundation pit based on centrifuge and numerical simulation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 114-118. DOI: 10.11779/CJGE2024S20012
    [2]HU Yao, LI Mingshuai, GUO Fei, XU Yinggang, LEI Huayang, WU Xiao, CHEN Xuejian. Numerical simulation of deformation of strata and stacked tunnels under traffic loads of subway[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 258-263. DOI: 10.11779/CJGE2023S20041
    [3]HUANG Zhongyuan, YANG Zhongxuan, GUO Ning. Numerical simulation of large deformation of piles in sand during cyclic penetration[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 411-418. DOI: 10.11779/CJGE20211503
    [4]WANG Long, ZHU Chang-gen, XU Ke-feng, YU Jian, LÜ Xi-lin. Numerical simulation of deformation control during excavation of deep foundation pit in soft soil with newly filled soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 84-87. DOI: 10.11779/CJGE2021S2020
    [5]WU Yi-qian, ZHU Yan-peng. Monitoring and numerical simulation of deformation law of deep foundation pit of subway station in Lanzhou collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 404-411. DOI: 10.11779/CJGE2014S2071
    [6]SHUAI Hong-yan, CHEN Shao-ping, ZENG Zhi. Numerical simulation of deformation characteristics of supporting structure of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 374-380. DOI: 10.11779/CJGE2014S2065
    [7]WEN Song-lin, REN Jia-li. Numerical simulation of non-conforming deformation feature between pile foundation and canal slope[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 178-183.
    [8]WANG Gang, ZHANG Jianmin. Numerical modeling of liquefaction-induced deformation in sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 403-409.
    [9]QI Shengwen, WU Faquan. Development of uplift deformation of dam foundation and surrounding mountains of Jiangya water power station[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 259-262.
    [10]WU Faquan, QI Shengwen. Mechanism of uplift deformation of the dam foundation of Jiangya reservior and the nearby mountains[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 449-454.
  • Cited by

    Periodical cited type(29)

    1. 王学峰,李翱翔,史国良,岳春强,张鹏. 大直径超长灌注桩承载特性研究. 山西建筑. 2025(04): 76-81 .
    2. 张高良. 复杂地质环境下桥梁钻孔灌注桩施工关键技术研究. 建筑技术. 2025(01): 61-64 .
    3. 田圆圆. 桥梁后压浆灌注桩承载特性试验研究. 运输经理世界. 2025(01): 75-77 .
    4. 韩重庆,戴璐,黄远,陈乾. 南京市中心医院综合楼原址新建项目单侧大悬挑超限高层结构设计. 建筑结构. 2024(16): 107-113+68 .
    5. 郭能荣. 后压浆桩基承载特性试验研究与分析. 交通世界. 2024(22): 150-153 .
    6. 朱文波,戴国亮,邓会元,竺明星,龚维明. 后顶扩臂压浆桩竖向承载机理及其桩盘力学性能研究. 土木工程学报. 2024(10): 82-94 .
    7. 毛龙,朱文波,杨嘉毅,李勇海,邓会元,程丹莲. 移动射流加固吸力式沉箱基础承载特性试验研究. 岩土工程学报. 2024(S2): 226-230+241 . 本站查看
    8. 夏建中,刘天豪. 不同土体条件下超灌量对桩体位移的影响分析. 浙江科技学院学报. 2023(01): 55-61 .
    9. 吴建军,龚洪兵,胡伟,陈东旭. 桥梁工程后压浆灌注桩承载特性试验研究. 交通世界. 2023(Z2): 226-228+231 .
    10. 吴征,祁熙鹏,党涛,苗苗,陈强. 黄土地层桥梁桩基后压浆技术研究进展. 市政技术. 2023(06): 91-99+106 .
    11. 臧诗齐 ,戴国亮 ,钱晓楠 . 不同注浆材料作用下后压浆桩桩-土界面力学特性分析. 东南大学学报(自然科学版). 2023(03): 496-503 .
    12. 詹伟达,欧红亮,王幸,娄学谦,刘日炜. 桩端及桩侧后注浆对超长灌注桩承载特性的影响. 公路交通科技. 2023(09): 141-150 .
    13. 史昊. 银川沈阳西路快速化改造总体设计研究. 中国水运. 2022(02): 144-146 .
    14. 翟聪,罗志聪,柳磊,王同卫,钱晓楠. 组合后压浆对灌注桩承载力的增强作用研究. 中国水运(下半月). 2022(01): 139-141 .
    15. 晁鹏飞. 超大吨位灌注桩承载力试验及数值模型研究. 城市建筑. 2022(16): 159-163 .
    16. 王贵森,洪宝宁,孙东宁,邵志伟. 联合后注浆对群桩基础工程特性的影响. 公路. 2022(09): 203-211 .
    17. 王卿,李瑜,余奇异,胡涛. 洞庭湖地区桥梁组合压浆灌注桩竖向承载性能试验研究. 建筑结构. 2022(S2): 2497-2501 .
    18. 陈祉阳,龚维明,靳朋刘,朱建民,陈新奎. 基于分布式后压浆的灌注桩承载力试验研究. 地下空间与工程学报. 2022(S2): 689-695 .
    19. 徐艺飞,万志辉,戴国亮,龚维明,高鲁超. 桩端后压浆灌注桩长期承载性能试验研究. 建筑结构学报. 2021(04): 139-146 .
    20. 邸洪江,余奇异,钱晓楠,胡涛. 高速公路桥梁大直径组合后压浆灌注桩自平衡试验研究. 中国水运(下半月). 2021(06): 131-133 .
    21. 秦鹏飞,王为林,袁媛. 岩土工程注浆技术与其应用研究. 地质与勘探. 2021(03): 631-639 .
    22. 叶新宇,彭锐,马新岩,张升,王善勇. 压密效应对新型压密注浆土钉的强化研究. 岩土工程学报. 2021(09): 1649-1656+1738 . 本站查看
    23. 薛振年,冯泓鸣,任晨宁,周志军. 黄土地区桥梁灌注桩桩侧-桩端联合压浆模型试验. 长安大学学报(自然科学版). 2021(06): 19-28 .
    24. 王灿,刘青,党智. 基于挠度的连续梁桥预应力损失分析. 中国水运. 2021(12): 154-156 .
    25. 杨纪,李孟然,黄毅,崔振华. 游荡型河道引桥桩基组合注浆工艺关键技术. 人民黄河. 2020(01): 117-120 .
    26. 万志辉,戴国亮,龚维明,竺明星,高鲁超. 不同成桩工艺对后压浆灌注桩承载特性影响的试验研究. 东南大学学报(自然科学版). 2020(02): 231-236 .
    27. 万志辉,戴国亮,高鲁超,龚维明. 大直径后压浆灌注桩承载力和沉降的实用计算方法研究. 岩土力学. 2020(08): 2746-2755 .
    28. 王丽锋,周长庚. 路面基床病害治理中高性能压浆材料的试验研究. 路基工程. 2019(03): 194-198+204 .
    29. 刘彦峰,胡晓明,马远刚,刘少成. 后注浆技术在粉细砂地层灌注桩中的应用. 桥梁建设. 2019(S1): 127-132 .

    Other cited types(16)

Catalog

    Article views (347) PDF downloads (255) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return