• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Zhongyuan, YANG Zhongxuan, GUO Ning. Numerical simulation of large deformation of piles in sand during cyclic penetration[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 411-418. DOI: 10.11779/CJGE20211503
Citation: HUANG Zhongyuan, YANG Zhongxuan, GUO Ning. Numerical simulation of large deformation of piles in sand during cyclic penetration[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 411-418. DOI: 10.11779/CJGE20211503

Numerical simulation of large deformation of piles in sand during cyclic penetration

More Information
  • Received Date: December 19, 2021
  • Available Online: February 23, 2023
  • It is extremely important to understand the stress conditions around the pile shaft during pile installation for accurately predicting its bearing capacity. The large-deformation arbitrary Lagrangian-Eulerian (ALE) finite element method in ABAQUS with the state-dependent Mohr-Coulomb sand model is employed to simulate the highly instrumented calibration chamber tests. The stress regimes developed at different penetration stages are obtained with a focus placed on the radial stress. The h/R effects of the stress in the surrounding soil are validated, along with the stress distribution varying with the relative distance with respective to the pile tip and pile centerline. The numerical simulation results are in good agreement with the experimental ones, indicating the robustness of the numerical model. The stress distribution obtained from the numerical analysis fills the blank of the stress data near pile shaft in experiments and is considered to be useful for improving the design methods for driven piles.
  • [1]
    LEHANE B M, JARDINE R J, BOND A J, et al. Mechanisms of shaft friction in sand from instrumented pile tests[J]. Journal of Geotechnical Engineering, 1993, 119(1): 19-35. doi: 10.1061/(ASCE)0733-9410(1993)119:1(19)
    [2]
    CHOW F C M. Investigations into Displacement Pile Behaviour for Offshore Foundations[D]. London, UK: University of London, 1997.
    [3]
    张明义, 邓安福. 预制桩静力贯入层状地基的试验研究[J]. 岩土工程学报, 2000, 22(4): 490-492. doi: 10.3321/j.issn:1000-4548.2000.04.021

    ZHANG Mingyi, DENG Anfu. Experimental study on static penetration of precast pile into layered foundation[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 490-492. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.04.021
    [4]
    GAVIN K G, LEHANE B M. The shaft capacity of pipe piles in sand[J]. Canadian Geotechnical Journal, 2003, 40(1): 36-45. doi: 10.1139/t02-093
    [5]
    王浩, 周健, 邓志辉. 砂土中桩端阻力随位移发挥的内在机理研究[J]. 岩土工程学报, 2006, 28(5): 587-593. doi: 10.3321/j.issn:1000-4548.2006.05.008

    WANG Hao, ZHOU Jian, DENG Zhihui. Mobilization of toe resistance of piles with local displacement in sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 587-593. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.05.008
    [6]
    周健, 邓益兵, 叶建忠, 等. 砂土中静压桩沉桩过程试验研究与颗粒流模拟[J]. 岩土工程学报, 2009, 31(4): 501-507. doi: 10.3321/j.issn:1000-4548.2009.04.002

    ZHOU Jian, DENG Yibing, YE Jianzhong, et al. Experimental and numerical analysis of jacked piles during installation in sand[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 501-507. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.04.002
    [7]
    YANG Z X, JARDINE R J, ZHU B T, et al. Sand grain crushing and interface shearing during displacement pile installation in sand[J]. Géotechnique, 2010, 60(6): 469-482. doi: 10.1680/geot.2010.60.6.469
    [8]
    JARDINE R J, ZHU B T, FORAY P, et al. Measurement of stresses around closed-ended displacement piles in sand[J]. Géotechnique, 2013, 63(1): 1-17. doi: 10.1680/geot.9.P.137
    [9]
    JARDINE R J, ZHU B T, FORAY P, et al. Interpretation of stress measurements made around closed-ended displacement piles in sand[J]. Géotechnique, 2013, 63(8): 613-627. doi: 10.1680/geot.9.P.138
    [10]
    HENKE S, QIU G, GRABE J. A Coupled Eulerian- Lagrangian Approach to Solve Geotechnical Problems Involving Large Deformations[M]// Numerical Methods in Geotechnical Engineering. Boca Raton: CRC Press, 2010: 233-238.
    [11]
    王腾, 薛浩, 吴瑞. 黏土中静压管桩土塞机制研究[J]. 岩土力学, 2018, 39(12): 4335-4341, 4350. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812006.htm

    WANG Teng, XUE Hao, WU Rui. Mechanism of soil plug for jacked pipe pile in clay[J]. Rock and Soil Mechanics, 2018, 39(12): 4335-4341, 4350. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812006.htm
    [12]
    ZHANG C, NGUYEN G D, EINAV I. The end-bearing capacity of piles penetrating into crushable soils[J]. Géotechnique, 2013, 63(5): 341-354. doi: 10.1680/geot.11.P.117
    [13]
    ZHANG C, YANG Z X, NGUYEN G D, et al. Theoretical breakage mechanics and experimental assessment of stresses surrounding piles penetrating into dense silica sand[J]. Géotechnique Letters, 2014, 4(1): 11-16. doi: 10.1680/geolett.13.00075
    [14]
    YANG Z X, GAO Y Y, JARDINE R J, et al. Large deformation finite-element simulation of displacement-pile installation experiments in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(6): 04020044. doi: 10.1061/(ASCE)GT.1943-5606.0002271
    [15]
    周健, 陈小亮, 周凯敏, 等. 静压开口管桩沉桩过程模型试验及数值模拟[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3839-3846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2057.htm

    ZHOU Jian, CHEN Xiaoliang, ZHOU Kaimin, et al. Model test and numerical simulation of driving process of open-ended jacked pipe piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3839-3846. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2057.htm
    [16]
    詹永祥, 姚海林, 董启朋, 等. 砂土中开口管桩沉桩过程的颗粒流模拟研究[J]. 岩土力学, 2013, 34(1): 283-289. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301041.htm

    ZHAN Yongxiang, YAO Hailin, DONG Qipeng, et al. Study of process of open-ended pipe pile driven into sand soil by particle flow simulation[J]. Rock and Soil Mechanics, 2013, 34(1): 283-289. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301041.htm
    [17]
    WANG J F, ZHAO B D. Discrete-continuum analysis of monotonic pile penetration in crushable sands[J]. Canadian Geotechnical Journal, 2014, 51(10): 1095-1110. doi: 10.1139/cgj-2013-0263
    [18]
    LIU S, WANG J F. Depth-independent cone penetration mechanism by a discrete element method (DEM)-based stress normalization approach[J]. Canadian Geotechnical Journal, 2016, 53(5): 871-883. doi: 10.1139/cgj-2015-0188
    [19]
    LORENZO R, DA CUNHA R P, CORDÃO NETO M P, et al. Numerical simulation of installation of jacked piles in sand using material point method[J]. Canadian Geotechnical Journal, 2018, 55(1): 131-146. doi: 10.1139/cgj-2016-0455
    [20]
    CIANTIA M, O'SULLIVAN C, JARDINE R J. Pile penetration in crushable soils: Insights from micromechanical modelling[C]//Proceedings of 17th European Conf on Soil Mechanics and Geotechnical Engineering (ECSMGE-2019). Alexandria, 2019.
    [21]
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112. doi: 10.1680/geot.1985.35.2.99
    [22]
    LI X S, WANG Y. Linear representation of steady-state line for sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1215-1217. doi: 10.1061/(ASCE)1090-0241(1998)124:12(1215)
    [23]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
    [24]
    AGHAKOUCHAK A. Advanced Laboratory Studies to Explore the Axial Cyclic Behaviour of Driven Piles[D]. London: Imperial College London, 2015.
    [25]
    DANO C, HICHER P Y, TAILLIEZ S. Engineering properties of grouted sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(3): 328-338. doi: 10.1061/(ASCE)1090-0241(2004)130:3(328)
    [26]
    GAUDIN C, SCHNAID F, GARNIER J. Sand characterization by combined centrifuge and laboratory tests[J]. International Journal of Physical Modelling in Geotechnics, 2005, 5(1): 42-56. doi: 10.1680/ijpmg.2005.050104
    [27]
    ANDRIA-NTOANINA J, CANOU J. DUPLA J C. Caractérisation Mécanique Du Sable De Fontainebleau NE34 À L'Appareil Triaxial Sous Cisaillement Monotone[R]. Paris: Laboratoire Navier-Géotechnique (CERMES, ENPC/LCPC), 2010. (ANDRIA-NTOANINA J, CANOU J. DUPLA J C. Mechanical Characterization of the Fontainebleau NE34 Sand in Monotonic Triaxial Shear Tests[R]. Paris: Navier Laboration-Geotechnical Engineering, 2010. (in French))
    [28]
    ALTUHAFI F N, JARDINE R J, GEORGIANNOU V N, et al. Effects of particle breakage and stress reversal on the behaviour of sand around displacement piles[J]. Géotechnique, 2018, 68(6): 546-555. doi: 10.1680/jgeot.17.P.117
    [29]
    ARSHAD M I. Experimental Study of the Displacements Caused by Cone Penetration in Sand[D]. West Lafayette: Purdue University, 2014.
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return