Citation: | HUANG Zhongyuan, YANG Zhongxuan, GUO Ning. Numerical simulation of large deformation of piles in sand during cyclic penetration[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 411-418. DOI: 10.11779/CJGE20211503 |
[1] |
LEHANE B M, JARDINE R J, BOND A J, et al. Mechanisms of shaft friction in sand from instrumented pile tests[J]. Journal of Geotechnical Engineering, 1993, 119(1): 19-35. doi: 10.1061/(ASCE)0733-9410(1993)119:1(19)
|
[2] |
CHOW F C M. Investigations into Displacement Pile Behaviour for Offshore Foundations[D]. London, UK: University of London, 1997.
|
[3] |
张明义, 邓安福. 预制桩静力贯入层状地基的试验研究[J]. 岩土工程学报, 2000, 22(4): 490-492. doi: 10.3321/j.issn:1000-4548.2000.04.021
ZHANG Mingyi, DENG Anfu. Experimental study on static penetration of precast pile into layered foundation[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 490-492. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.04.021
|
[4] |
GAVIN K G, LEHANE B M. The shaft capacity of pipe piles in sand[J]. Canadian Geotechnical Journal, 2003, 40(1): 36-45. doi: 10.1139/t02-093
|
[5] |
王浩, 周健, 邓志辉. 砂土中桩端阻力随位移发挥的内在机理研究[J]. 岩土工程学报, 2006, 28(5): 587-593. doi: 10.3321/j.issn:1000-4548.2006.05.008
WANG Hao, ZHOU Jian, DENG Zhihui. Mobilization of toe resistance of piles with local displacement in sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 587-593. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.05.008
|
[6] |
周健, 邓益兵, 叶建忠, 等. 砂土中静压桩沉桩过程试验研究与颗粒流模拟[J]. 岩土工程学报, 2009, 31(4): 501-507. doi: 10.3321/j.issn:1000-4548.2009.04.002
ZHOU Jian, DENG Yibing, YE Jianzhong, et al. Experimental and numerical analysis of jacked piles during installation in sand[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 501-507. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.04.002
|
[7] |
YANG Z X, JARDINE R J, ZHU B T, et al. Sand grain crushing and interface shearing during displacement pile installation in sand[J]. Géotechnique, 2010, 60(6): 469-482. doi: 10.1680/geot.2010.60.6.469
|
[8] |
JARDINE R J, ZHU B T, FORAY P, et al. Measurement of stresses around closed-ended displacement piles in sand[J]. Géotechnique, 2013, 63(1): 1-17. doi: 10.1680/geot.9.P.137
|
[9] |
JARDINE R J, ZHU B T, FORAY P, et al. Interpretation of stress measurements made around closed-ended displacement piles in sand[J]. Géotechnique, 2013, 63(8): 613-627. doi: 10.1680/geot.9.P.138
|
[10] |
HENKE S, QIU G, GRABE J. A Coupled Eulerian- Lagrangian Approach to Solve Geotechnical Problems Involving Large Deformations[M]// Numerical Methods in Geotechnical Engineering. Boca Raton: CRC Press, 2010: 233-238.
|
[11] |
王腾, 薛浩, 吴瑞. 黏土中静压管桩土塞机制研究[J]. 岩土力学, 2018, 39(12): 4335-4341, 4350. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812006.htm
WANG Teng, XUE Hao, WU Rui. Mechanism of soil plug for jacked pipe pile in clay[J]. Rock and Soil Mechanics, 2018, 39(12): 4335-4341, 4350. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812006.htm
|
[12] |
ZHANG C, NGUYEN G D, EINAV I. The end-bearing capacity of piles penetrating into crushable soils[J]. Géotechnique, 2013, 63(5): 341-354. doi: 10.1680/geot.11.P.117
|
[13] |
ZHANG C, YANG Z X, NGUYEN G D, et al. Theoretical breakage mechanics and experimental assessment of stresses surrounding piles penetrating into dense silica sand[J]. Géotechnique Letters, 2014, 4(1): 11-16. doi: 10.1680/geolett.13.00075
|
[14] |
YANG Z X, GAO Y Y, JARDINE R J, et al. Large deformation finite-element simulation of displacement-pile installation experiments in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(6): 04020044. doi: 10.1061/(ASCE)GT.1943-5606.0002271
|
[15] |
周健, 陈小亮, 周凯敏, 等. 静压开口管桩沉桩过程模型试验及数值模拟[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3839-3846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2057.htm
ZHOU Jian, CHEN Xiaoliang, ZHOU Kaimin, et al. Model test and numerical simulation of driving process of open-ended jacked pipe piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3839-3846. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2057.htm
|
[16] |
詹永祥, 姚海林, 董启朋, 等. 砂土中开口管桩沉桩过程的颗粒流模拟研究[J]. 岩土力学, 2013, 34(1): 283-289. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301041.htm
ZHAN Yongxiang, YAO Hailin, DONG Qipeng, et al. Study of process of open-ended pipe pile driven into sand soil by particle flow simulation[J]. Rock and Soil Mechanics, 2013, 34(1): 283-289. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301041.htm
|
[17] |
WANG J F, ZHAO B D. Discrete-continuum analysis of monotonic pile penetration in crushable sands[J]. Canadian Geotechnical Journal, 2014, 51(10): 1095-1110. doi: 10.1139/cgj-2013-0263
|
[18] |
LIU S, WANG J F. Depth-independent cone penetration mechanism by a discrete element method (DEM)-based stress normalization approach[J]. Canadian Geotechnical Journal, 2016, 53(5): 871-883. doi: 10.1139/cgj-2015-0188
|
[19] |
LORENZO R, DA CUNHA R P, CORDÃO NETO M P, et al. Numerical simulation of installation of jacked piles in sand using material point method[J]. Canadian Geotechnical Journal, 2018, 55(1): 131-146. doi: 10.1139/cgj-2016-0455
|
[20] |
CIANTIA M, O'SULLIVAN C, JARDINE R J. Pile penetration in crushable soils: Insights from micromechanical modelling[C]//Proceedings of 17th European Conf on Soil Mechanics and Geotechnical Engineering (ECSMGE-2019). Alexandria, 2019.
|
[21] |
BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112. doi: 10.1680/geot.1985.35.2.99
|
[22] |
LI X S, WANG Y. Linear representation of steady-state line for sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1215-1217. doi: 10.1061/(ASCE)1090-0241(1998)124:12(1215)
|
[23] |
LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
|
[24] |
AGHAKOUCHAK A. Advanced Laboratory Studies to Explore the Axial Cyclic Behaviour of Driven Piles[D]. London: Imperial College London, 2015.
|
[25] |
DANO C, HICHER P Y, TAILLIEZ S. Engineering properties of grouted sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(3): 328-338. doi: 10.1061/(ASCE)1090-0241(2004)130:3(328)
|
[26] |
GAUDIN C, SCHNAID F, GARNIER J. Sand characterization by combined centrifuge and laboratory tests[J]. International Journal of Physical Modelling in Geotechnics, 2005, 5(1): 42-56. doi: 10.1680/ijpmg.2005.050104
|
[27] |
ANDRIA-NTOANINA J, CANOU J. DUPLA J C. Caractérisation Mécanique Du Sable De Fontainebleau NE34 À L'Appareil Triaxial Sous Cisaillement Monotone[R]. Paris: Laboratoire Navier-Géotechnique (CERMES, ENPC/LCPC), 2010. (ANDRIA-NTOANINA J, CANOU J. DUPLA J C. Mechanical Characterization of the Fontainebleau NE34 Sand in Monotonic Triaxial Shear Tests[R]. Paris: Navier Laboration-Geotechnical Engineering, 2010. (in French))
|
[28] |
ALTUHAFI F N, JARDINE R J, GEORGIANNOU V N, et al. Effects of particle breakage and stress reversal on the behaviour of sand around displacement piles[J]. Géotechnique, 2018, 68(6): 546-555. doi: 10.1680/jgeot.17.P.117
|
[29] |
ARSHAD M I. Experimental Study of the Displacements Caused by Cone Penetration in Sand[D]. West Lafayette: Purdue University, 2014.
|
[1] | FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014 |
[2] | LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016 |
[3] | LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023 |
[4] | ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010 |
[5] | GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071. |
[6] | LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035. |
[7] | Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855. |
[8] | ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839. |
[9] | HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032. |
[10] | SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737. |