• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Zong-bin, JIANG An-nan, LI Hong, WANG Shan-yong. Creep-seepage coupling laws of quartzite under cyclic loading-unloading conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1832-1841. DOI: 10.11779/CJGE201710011
Citation: JIANG Zong-bin, JIANG An-nan, LI Hong, WANG Shan-yong. Creep-seepage coupling laws of quartzite under cyclic loading-unloading conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1832-1841. DOI: 10.11779/CJGE201710011

Creep-seepage coupling laws of quartzite under cyclic loading-unloading conditions

More Information
  • Received Date: June 30, 2016
  • Published Date: October 24, 2017
  • The quartzite of Dadongshan Tunnel is taken as the research object to carry out rock creep and seepage coupling experiments under cyclic loading-unloading conditions. The creep characteristics, permeability and seepage-creep coupling mechanism are analyzed. The development laws of volumetric strain in the phase of densification, crack propagation and crack coalescence are acquired. The relationship between permeability and volumetric strain is summarized. It is indicated that the axial loads between 0 and 50 MPa are in compression phase. If the loads increase, the unrecoverable deformation will be generated. When the loads reach up to 160 MPa, the creep curve enters into the accelerating period. With the increase of axial load level, the general tendency of permeability first decreases and then increases, and the minimum value appears at the largest densification points. After the creep process enters into accelerating period, the permeability sharply increases. Using the Cvisc model from FLAC3D as the basis and by introducing the zone state index (ZSI) into the volumetric strain, the relationship between ZSI and permeability is established. Numerical simulations are conducted to verify experimental results by adopting a nonlinear creep Nishihara model based on the strain softening. The results show that the permeability along with the development of the time in the process of loading near the inlet side of the permeability changes quickly. The damaged area of ZSI contours is coincided basically with the failure mode of the test samples in the "V"-typed shear zone. The theoretical curves are in good agreement with the numerical ones. The proposed model can reflect the creep-seepage coupling characteristics and the local failure rules of rock under loading-unloading conditions.
  • [1]
    YANG S Q, CHENG L. Non-stationary and nonlinear visco-elastic shear creep model for shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(6): 1011-1020.
    [2]
    王者超, WONG Ron, 乔丽苹. 油砂的蠕变特性与本构模型研究[J]. 岩土工程学报, 2012, 34(8): 1412-1424. (WANG Zhe-chao, WONG Ron, QIAO Li-ping. Creep behavior of oil sand and its constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1412-1424. (in Chinese))
    [3]
    王者超, 赵建纲, 李术才, 等. 循环荷载作用下花岗岩疲劳力学性质及其本构模型[J]. 岩石力学与工程学报, 2012, 31(9): 1888-1900. (WANG Zhe-chao, ZHAO Jian-gang, LI Shu-cai, et al. Fatigue mechanical behavior of granite subjected to cyclic load and its constitutive model[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1888-1900. (in Chinese))
    [4]
    乔丽苹, 王者超, 李术才, 等. 岩石内变量蠕变模型研究[J]. 岩土力学, 2012, 33(12): 3529-3603. (QIAO Li-ping, WANG Zhe-chao, LI Shu-cai, et al. An internal-variable creep model for rocks[J]. Rock and Soil Mechanics, 2012, 33(12): 3529-3603. (in Chinese))
    [5]
    徐 鹏, 杨圣奇. 循环加卸载下煤的黏弹塑性蠕变本构关系研究[J]. 岩石力学与工程学报, 2015, 34(3): 537-545. (XU Peng, YANG Sheng-qi. Study of visco-elasto-plastic constitutive model of coal under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 537-545. (in Chinese))
    [6]
    江力宇, 张强勇, 张龙云, 等. 不同加卸载条件下孟底沟水电站花岗岩蠕变特性研究[J]. 水电能源科学, 2016, 34(2): 124-128. (JIANG Li-yu, ZHANG Qiang-yong, ZHANG Long-yun, et al. Experimental study of creep mechanical properties of granite at Mengdigou hydropower station under different loading-unloading conditions[J]. Water Resources and Power, 2016, 34(2): 124-128. (in Chinese))
    [7]
    WANG J A, PARK H D. Fluid permeability of sedimentary rocks in a complete stress-strain process[J]. Engineering Geology, 2002, 63(3/4): 291-300.
    [8]
    STORMONT J C, DAEMEN J J K. Laboratory study of gas permeability changes in rock salt during deformation[J]. Int J Rock Mech Min Sci, 1992, 29: 323-342.
    [9]
    胡大伟, 周 辉, 潘鹏志, 等. 砂岩三轴循环加卸载条件下的渗透率研究[J]. 岩土力学, 2010, 31(9): 2749-2754. (HU Da-wei, ZHOU Hui, PAN Peng-zhi, et al. Study of permeability of sandstone in triaxial cyclic stress tests[J]. Rock and Soil Mechanics, 2010, 31(9): 2749-2754. (in Chinese))
    [10]
    许 江, 李波波, 周 婷, 等. 加卸载条件下煤岩变形特性与渗透特征的试验研究[J]. 煤炭学报, 2012, 37(9): 1493-1498. (XU Jiang, LI Bo-bo, ZHOU Ting, et al. Experimental study of coal deformation and permeability characteristics under loading-unloading conditions[J]. Journal of China Coal Society, 2012, 37(9): 1493-1498. (in Chinese))
    [11]
    阎 岩, 王恩志, 王思敬. 渗流场中岩石流变特性的数值模拟[J]. 岩土力学, 2010, 31(6): 1943-1949. (YAN Yan, WANG En-zhi, WANG Si-jing. Numerical simulation of rheological properties of rocks in seepage field[J]. Rock and Soil Mechanics, 2010, 31(6): 1943-1949. (in Chinese))
    [12]
    阎 岩, 王恩志, 王思敬, 等. 岩石渗流-流变耦合的试验研究[J]. 岩土力学, 2010, 31(7): 2095-2103. (YAN Yan, WANG En-zhi, WANG Si-jing, et al. Study of seepage- rheology coupling experiment of rocks[J]. Rock and Soil Mechanics, 2010, 31(7): 2095-2103. (in Chinese))
    [13]
    杨红伟, 许 江, 聂 闻, 等. 渗流水压力分级加载岩石蠕变特性研究[J]. 岩土工程学报, 2015, 37(9): 1613-1619. (YANG Hong-wei, XU Jiang, NIE Wen, et al. Experimental study on creep of rocks under step loading of seepage pressure[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1613-1619. (in Chinese))
    [14]
    杨红伟, 许 江, 彭守建, 等. 孔隙水压力分级加载砂岩蠕变特性研究[J]. 岩土力学, 2015, 36(增刊2): 365-370. (YANG Hong-wei, XU Jiang, PENG Shou-jian, et al. Study of sandstone creep characteristics under stepwise loading pore water pressures[J]. Rock and Soil Mechanics, 2015, 36(S2): 365-370. (in Chinese))
    [15]
    何 峰, 王来贵, 王振伟, 等. 煤岩蠕变-渗流耦合规律实验研究[J]. 煤炭学报, 2011, 36(6): 930-933. (HE Feng, WANG Lai-gui, WANG Zhen-wei, et al. Experimental study on creep-seepage coupling law of coal(rock)[J]. Journal of China Coal Society, 2011, 36(6): 930-933. (in Chinese))
    [16]
    潘荣锟, 程远平, 董 骏, 等. 不同加卸载下层理裂隙煤体的渗透特性研究[J]. 煤炭学报, 2014, 39(3): 473-477. (PAN Rong-kun, CHENG Yuan-ping, DONG Jun, et al. Research on permeability characteristics of layered natural coal under different loading and unloading[J]. Journal of China Coal Society, 2014, 39(3): 473-477. (in Chinese))
    [17]
    王 伟, 徐卫亚, 王如宾, 等. 低渗透岩石三轴压缩过程中的渗透性研究[J]. 岩石力学与工程学报, 2015, 34(1): 40-47. (WANG Wei, XU Wei-ya, WANG Ru-bin, et al. Permeability of dense rock under triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 40-47. (in Chinese))
    [18]
    MCKEE C R, BUMB A C, KOENIG R A. Stress-dependent permeability and porosity of coal and other geologic formations[J]. SPE Formation Evaluation, 1988, 3(1): 81-91.
    [19]
    王军祥, 姜谙男, 宋战平. 岩石弹塑性应力-渗流-损伤耦合模型研究(Ⅰ): 模型建立及其数值求解程序[J]. 岩土力学, 2014, 35(增刊2): 626-637, 644. (WANG Jun-xiang, JIANG An-nan, SONG Zhan-ping. Study of the coupling model of rock elastoplastic stress-seepage-damage (Ⅰ): Modelling and its numerical solution procedure[J]. Rock and Soil Mechanics, 2014, 35(S2): 626-637, 644. (in Chinese))
    [20]
    陈祖安, 伍向阳, 孙德明, 等. 砂岩渗透率随静压力变化的关系研究[J]. 岩石力学与工程学报, 1995, 14(2): 155-159. (CHEN Zu-an, WU Xiang-yang, SUN De-ming, et al. Study on relationship between permeability of sandstone and hydrostatic pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 1995, 14(2): 155-159. (in Chinese))
    [21]
    王春波, 丁文其, 刘书斌, 等. 各向异性渗透系数随应变场动态变化分析[J]. 岩石力学与工程学报, 2014, 33(增刊1): 3015-3021. (WANG Chun-bo, DING Wen-qi, LIU Shu-bin, et al. Analysis of dynamic changes of anisotropic permeability[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3015-3021. (in Chinese))
    [22]
    杨文东, 张强勇, 张建国, 等. 基于FLAC3D的改进Burgers蠕变损伤模型的二次开发研究[J]. 岩土力学, 2010, 31(6): 1956-1964. (YANG Wen-dong, ZHANG Qiang- yong, ZHANG Jian-guo, et al. Second development of improved Burgers creep damage constitutive model of rock based on FLAC3D[J]. Rock and Soil Mechanics, 2010, 31(6): 1956-1964. (in Chinese))
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
    [6]HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [8]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [9]Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799.
    [10]XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return