Citation: | WANG Lei, SUN De-an, XIE Yi, LI Pei-chao. One-dimensional consolidation of fractional order derivative viscoelastic saturated soils under arbitrary loading[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1823-1831. DOI: 10.11779/CJGE201710010 |
[1] |
刘忠玉, 闫富有, 王喜军. 基于非达西渗流的饱和黏土一维流变固结分析[J]. 岩石力学与工程学报, 2013, 32(9): 1937-1944. (LIU Zhong-yu, YAN Fu-you, WANG Xi-jun. One-dimensional rheological consolidation analysis of saturated clay considering on non-Darcy flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1937-1944. (in Chinese))
|
[2] |
刘林超, 闫启方. 分数导数模型描述的黏弹性土层中桩基水平振动研究[J]. 工程力学, 2011, 28(12): 139-145. (LIU Lin-chao, YAN Qi-fang. Lateral vibration of single pile in viscoelastic soil described by fractional derivative model[J]. Engineering Mechanics, 2011, 28(12): 139-145. (in Chinese))
|
[3] |
陈宗基. 固结及次时间效应的单向问题[J]. 土木工程学报, 1958, 5(1): 1-10. (CHEN Zong-ji. Unidirectional issue several time consolidation effect[J]. China Civil Engineering Journal, 1958, 5(1): 1-10. (in Chinese))
|
[4] |
赵维炳. 广义Voigt模型模拟的饱水土体一维固结理论及其应用[J]. 岩土工程学报, 1989, 11(5): 78-85. (ZHAO Wei-bing. Generalized Voigt model to simulate the saturated soil and water body one-dimensional consolidation theory and its application[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(5): 78-85. (in Chinese))
|
[5] |
蔡袁强, 徐长节, 袁海明. 任意荷载下成层黏弹性地基的一维固结[J]. 应用力学和数学, 2001, 22(3): 307-313. (CAI Yuan-qiang, XU Chang-jie, YUAN Hai-ming. Under arbitrary loading viscoelastic foundation layer of one-dimensional consolidation[J]. Applied Mathematics and Mechanics, 2001, 22(3): 307-313. (in Chinese))
|
[6] |
XIE K H, XIE X Y, LI X B. Analytical theory for one-dimensional consolidation of clayey soils exhibiting rheological characteristics under time-dependent loading[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2008, 32(14): 1833-1855.
|
[7] |
李皓玉, 杨绍普, 刘 进, 等. 移动分布荷载下层状黏弹性体系的动力响应分析[J]. 工程力学, 2015, 32(1): 120-127. (LI Hao-yu, YANG Shao-pu, LIU Jin, et al. Dynamic response in multilayered viscoelastic medium generated by moving distributed loads[J]. Engineering Mechanics, 2015, 32(1): 120-127. (in Chinese))
|
[8] |
GEMANT A. A method of analyzing experimental results obtained from elasto-viscous bodies[J]. Journal of Applied Physics, 1936, 7(1): 311-317.
|
[9] |
TAYLOR D W, MERCHANT W. A theory of clay consolidation accounting for secondary compression[J]. Journal of Mathematics and Physics, 1940, 19(3): 167-185.
|
[10] |
TAN T K. Secondary time effects and consolidation of clays[J]. Scientia Sinica, 1958, 7(11): 1060-1075.
|
[11] |
李西斌, 贾献林, 谢康和. 变荷载下软土一维流变固结解析理论[J]. 岩土力学, 2006, 27(增刊): 140-146. (LI Xi-bin, JIA Xian-lin, XIE Kang-he. Analytical solution of 1D viscoelastic consolidation of soft soils under time-dependent loadings [J]. Rock and Soil Mechanics, 2006, 27(S0): 140-146. (in Chinese))
|
[12] |
何利军, 孔令伟, 吴文军, 等. 采用分数阶导数描述软黏土蠕变的模型[J]. 岩土力学, 2011, 32(增刊): 239-244. (HE Li-jun, KONG Ling-wei, WU Wen-jun, et al. A description of creep model for soft soil with fractional derivative[J]. Rock and Soil Mechanics, 2011, 32(S0): 239-244. (in Chinese))
|
[13] |
尹检务, 旷杜敏, 王智超. 压实土固结蠕变特征及分数阶流变模型参数的分析[J]. 湖南科技大学学报(自然科学版), 2015, 30(3): 46-51. (YIN Jian-wu, KUANG Du-min, WANG Zhi-chao. Consolidation creep characteristics of compacted clay and its parameters analysis of rheological constitutive model based on fractional calculus[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2015, 30(3): 46-51. (in Chinese))
|
[14] |
陈 亮, 陈寿根, 张 恒, 等. 基于分数阶微积分的非线性黏弹塑性蠕变模型[J]. 四川大学学报(工程科学版), 2013, 45(3): 7-11. (CHEN Liang, CHEN Shou-gen, ZHANG Heng, et al. A nonlinear viscoelasto-plastic creep model based on fractional calculus[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(3): 7-11. (in Chinese))
|
[15] |
孙海忠, 张 卫. 一种分析软土黏弹性的分数导数开尔文模型[J]. 岩土力学, 2007, 28(9): 1983-1986. (SUN Hai-zhong, ZHANG Wei. Analysis of soft soil with viscoelastic fractional derivative Kelvin model[J]. Rock and Soil Mechanics. 2007, 28(9): 1983-1986. (in Chinese))
|
[16] |
YIN De-shun, LI Yan-qing, WU Hao, et al. Fractional description of mechanical property evolution of soft soils during creep[J]. Water Science and Engineering, 2013, 6(4): 446-455.
|
[17] |
殷德顺, 任俊娟, 和成亮, 等. 一种新的岩土流变模型元件[J]. 岩石力学与工程学报, 2007, 26(9): 1899-1903. (YIN De-shun, REN Jun-juan, HE Cheng-liang, et al. A new rheological model element for geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(9): 1899-1903. (in Chinese))
|
[18] |
王智超, 罗迎社, 罗文波, 等. 路基压实土流变变形的力学表征及参数辨识[J]. 岩石力学与工程学报, 2011, 30(1): 208-216. (WANG Zhi-chao, LUO Ying-she, LUO Wen-bo, et al. Mechanical characterization and parameter identification of rheological deformation of subgrade compacted soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 208-216. (in Chinese))
|
[19] |
NONNENMACHER T F, METZLER R. On the Riemann-Liouville fractional calculus and some recent applications[J]. Fractals, 1995, 3(3): 557-566.
|
[20] |
MANDELBORT B B. The fractal geometry of nature[M]. San Fransico: Freeman, 1982.
|
[21] |
何光渝, 王卫红. 精确的拉普拉斯数值反演方法及其应用[J]. 石油学报, 1995, 16(1): 96-103. (HE Guang-yu, WANG Wei-hong. Accurate numerical Laplace inversion method and its application[J]. Acta Petroleisinaca, 1995, 16(1): 96-103. (in Chinese))
|
[22] |
张先伟, 王常明. 结构性软土的黏滞系数[J]. 岩土力学, 2011, 32(11): 3276-3282. (ZHANG Xian-wei, WANG Chang-ming. Viscosity coefficient of structural soft clay[J]. Rock and Soil Mechanics, 2011, 32(11): 3276-3282. (in Chinese))
|
[1] | HE Yu-qi, LIAO Hong-jian, DONG Qi, NIU Bo, LIU Hu. Experimental study on strength characteristics of geogrid-reinforced loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 181-185. DOI: 10.11779/CJGE2021S1033 |
[2] | GAO Lei, HU Guo-hui, CHEN Yong-hui, HU Yan-jie, GONG Yun-hao. Triaxial tests clay reinforced by basalt fiber[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 198-203. DOI: 10.11779/CJGE2017S1039 |
[3] | HU You-chang, JIN Shao-wei, SONG Liang, MAO Ai-min, LIU Jie. Stability analysis of reinforced soil slopes based on observation of reinforcement-effected strip[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 228-234. DOI: 10.11779/CJGE201702005 |
[4] | SHANGGUAN Shi-qing, YANG Min, CHEN Fei, GUO Jun-dong, ZHANG Jun-feng. Interaction of reinforced cushion and pile-soil system in embankments based on principle of minimum potential energy[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1264-1270. DOI: 10.11779/CJGE201507012 |
[5] | JIA Liang, ZHU Yan-peng, LAI Chun-jing. Calculation of bar tension in reinforced earth retaining wall under earthquake load[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 412-417. |
[6] | PENG Fang-le, CAO Yan-bo. FEM analysis of effect of reinforced layer numbers on bearing capacity and deformation of reinforced-sand retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1700-1707. |
[7] | LIU Feiyu, CAI Yuanqiang, XU Changjie, WANG Jun. Parametric study of reinforced pavements on soft clay under traffic loading[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1659-1664. |
[8] | ZHANG Mengxi, MIN Xing. Triaxial tests on sand reinforced with one-layer 3D reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 931-936. |
[9] | ZHANG Xingqiang, YAN Shuwang, DENG Weidong. Principle analysis of reinforced pavement under automobile loading[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 94-98. |
[10] | Wu Jinghai, Wang Dequn, Chen Huan. Study on geosynthetic reinforced sand by triaxial compression test[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 199-204. |