Citation: | WANG Lei, SUN De-an, XIE Yi, LI Pei-chao. One-dimensional consolidation of fractional order derivative viscoelastic saturated soils under arbitrary loading[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1823-1831. DOI: 10.11779/CJGE201710010 |
[1] |
刘忠玉, 闫富有, 王喜军. 基于非达西渗流的饱和黏土一维流变固结分析[J]. 岩石力学与工程学报, 2013, 32(9): 1937-1944. (LIU Zhong-yu, YAN Fu-you, WANG Xi-jun. One-dimensional rheological consolidation analysis of saturated clay considering on non-Darcy flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1937-1944. (in Chinese))
|
[2] |
刘林超, 闫启方. 分数导数模型描述的黏弹性土层中桩基水平振动研究[J]. 工程力学, 2011, 28(12): 139-145. (LIU Lin-chao, YAN Qi-fang. Lateral vibration of single pile in viscoelastic soil described by fractional derivative model[J]. Engineering Mechanics, 2011, 28(12): 139-145. (in Chinese))
|
[3] |
陈宗基. 固结及次时间效应的单向问题[J]. 土木工程学报, 1958, 5(1): 1-10. (CHEN Zong-ji. Unidirectional issue several time consolidation effect[J]. China Civil Engineering Journal, 1958, 5(1): 1-10. (in Chinese))
|
[4] |
赵维炳. 广义Voigt模型模拟的饱水土体一维固结理论及其应用[J]. 岩土工程学报, 1989, 11(5): 78-85. (ZHAO Wei-bing. Generalized Voigt model to simulate the saturated soil and water body one-dimensional consolidation theory and its application[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(5): 78-85. (in Chinese))
|
[5] |
蔡袁强, 徐长节, 袁海明. 任意荷载下成层黏弹性地基的一维固结[J]. 应用力学和数学, 2001, 22(3): 307-313. (CAI Yuan-qiang, XU Chang-jie, YUAN Hai-ming. Under arbitrary loading viscoelastic foundation layer of one-dimensional consolidation[J]. Applied Mathematics and Mechanics, 2001, 22(3): 307-313. (in Chinese))
|
[6] |
XIE K H, XIE X Y, LI X B. Analytical theory for one-dimensional consolidation of clayey soils exhibiting rheological characteristics under time-dependent loading[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2008, 32(14): 1833-1855.
|
[7] |
李皓玉, 杨绍普, 刘 进, 等. 移动分布荷载下层状黏弹性体系的动力响应分析[J]. 工程力学, 2015, 32(1): 120-127. (LI Hao-yu, YANG Shao-pu, LIU Jin, et al. Dynamic response in multilayered viscoelastic medium generated by moving distributed loads[J]. Engineering Mechanics, 2015, 32(1): 120-127. (in Chinese))
|
[8] |
GEMANT A. A method of analyzing experimental results obtained from elasto-viscous bodies[J]. Journal of Applied Physics, 1936, 7(1): 311-317.
|
[9] |
TAYLOR D W, MERCHANT W. A theory of clay consolidation accounting for secondary compression[J]. Journal of Mathematics and Physics, 1940, 19(3): 167-185.
|
[10] |
TAN T K. Secondary time effects and consolidation of clays[J]. Scientia Sinica, 1958, 7(11): 1060-1075.
|
[11] |
李西斌, 贾献林, 谢康和. 变荷载下软土一维流变固结解析理论[J]. 岩土力学, 2006, 27(增刊): 140-146. (LI Xi-bin, JIA Xian-lin, XIE Kang-he. Analytical solution of 1D viscoelastic consolidation of soft soils under time-dependent loadings [J]. Rock and Soil Mechanics, 2006, 27(S0): 140-146. (in Chinese))
|
[12] |
何利军, 孔令伟, 吴文军, 等. 采用分数阶导数描述软黏土蠕变的模型[J]. 岩土力学, 2011, 32(增刊): 239-244. (HE Li-jun, KONG Ling-wei, WU Wen-jun, et al. A description of creep model for soft soil with fractional derivative[J]. Rock and Soil Mechanics, 2011, 32(S0): 239-244. (in Chinese))
|
[13] |
尹检务, 旷杜敏, 王智超. 压实土固结蠕变特征及分数阶流变模型参数的分析[J]. 湖南科技大学学报(自然科学版), 2015, 30(3): 46-51. (YIN Jian-wu, KUANG Du-min, WANG Zhi-chao. Consolidation creep characteristics of compacted clay and its parameters analysis of rheological constitutive model based on fractional calculus[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2015, 30(3): 46-51. (in Chinese))
|
[14] |
陈 亮, 陈寿根, 张 恒, 等. 基于分数阶微积分的非线性黏弹塑性蠕变模型[J]. 四川大学学报(工程科学版), 2013, 45(3): 7-11. (CHEN Liang, CHEN Shou-gen, ZHANG Heng, et al. A nonlinear viscoelasto-plastic creep model based on fractional calculus[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(3): 7-11. (in Chinese))
|
[15] |
孙海忠, 张 卫. 一种分析软土黏弹性的分数导数开尔文模型[J]. 岩土力学, 2007, 28(9): 1983-1986. (SUN Hai-zhong, ZHANG Wei. Analysis of soft soil with viscoelastic fractional derivative Kelvin model[J]. Rock and Soil Mechanics. 2007, 28(9): 1983-1986. (in Chinese))
|
[16] |
YIN De-shun, LI Yan-qing, WU Hao, et al. Fractional description of mechanical property evolution of soft soils during creep[J]. Water Science and Engineering, 2013, 6(4): 446-455.
|
[17] |
殷德顺, 任俊娟, 和成亮, 等. 一种新的岩土流变模型元件[J]. 岩石力学与工程学报, 2007, 26(9): 1899-1903. (YIN De-shun, REN Jun-juan, HE Cheng-liang, et al. A new rheological model element for geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(9): 1899-1903. (in Chinese))
|
[18] |
王智超, 罗迎社, 罗文波, 等. 路基压实土流变变形的力学表征及参数辨识[J]. 岩石力学与工程学报, 2011, 30(1): 208-216. (WANG Zhi-chao, LUO Ying-she, LUO Wen-bo, et al. Mechanical characterization and parameter identification of rheological deformation of subgrade compacted soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 208-216. (in Chinese))
|
[19] |
NONNENMACHER T F, METZLER R. On the Riemann-Liouville fractional calculus and some recent applications[J]. Fractals, 1995, 3(3): 557-566.
|
[20] |
MANDELBORT B B. The fractal geometry of nature[M]. San Fransico: Freeman, 1982.
|
[21] |
何光渝, 王卫红. 精确的拉普拉斯数值反演方法及其应用[J]. 石油学报, 1995, 16(1): 96-103. (HE Guang-yu, WANG Wei-hong. Accurate numerical Laplace inversion method and its application[J]. Acta Petroleisinaca, 1995, 16(1): 96-103. (in Chinese))
|
[22] |
张先伟, 王常明. 结构性软土的黏滞系数[J]. 岩土力学, 2011, 32(11): 3276-3282. (ZHANG Xian-wei, WANG Chang-ming. Viscosity coefficient of structural soft clay[J]. Rock and Soil Mechanics, 2011, 32(11): 3276-3282. (in Chinese))
|
[1] | LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228 |
[2] | JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022 |
[3] | XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012 |
[4] | HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013 |
[5] | ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021 |
[6] | HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019 |
[7] | LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. |
[8] | LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648. |
[9] | Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799. |
[10] | XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402. |