Citation: | LIU Xin, GAN Liang-qin, SHENG Ke, HONG Bao-ning. Experimental study on service life of foamed mixture lightweight soil based on method of accelerated stress tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1793-1799. DOI: 10.11779/CJGE201710006 |
[1] |
何国杰, 丁振洲, 郑颖人.气泡混合轻质土的研制及其性能[J]. 地下空间与工程学报, 2009, 5(1): 18-22. (HE Guo-jie, DING Zhen-zhou, ZHENG Ying-ren. Preparation of bubble mixed light soil and its properties[J]. Journal of Underground Space and Engineering, 2009, 5(1): 18-22. (in Chinese))
|
[2] |
陈永辉, 石刚传, 曹德洪, 等. 气泡混合轻质土置换路基控制工后沉降研究[J]. 岩土工程学报, 2011, 33(12): 1854-1862. (CHEN Yong-hui, SHI Gang-chuan, CAO De-hong, et al. Control of post-construction settlement by replacing subgrade with foamed cement banking[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1854-1862. (in Chinese))
|
[3] |
KAMEI T, TAKASHIMA J I, SHIBI T. Temperature effects on unconfined compressive strength and microstructure of foamed mixture lightweight soil containing flaked polyethylene terephthalate (PET) [J]. Soils and Foundations, 2008, 48(6): 833-842.
|
[4] |
JONGPRADIST P. Effective void ratio for assessing the mechanical properties of cement-clay admixtures at high water content[J]. Journal of Geotechnical and Geo- environmental Engineering, 2011, 137: 621-627.
|
[5] |
KIKUCHI Y, NAGATOME T, MIZUTANI T A. The effect of air foam inclusion on the permeability and absorption properties of light weight soil[J]. Soils and Foundations, 2011, 51(1): 151-165.
|
[6] |
PARK H I, KIM Y T. Prediction of strength of reinforced lightweight soil using an artificial neural network[J]. Engineering Computations, 2011, 28(5): 600-615.
|
[7] |
KIM T H, KIM T H, KANG G C. Performance evaluation of road embankment constructed using lightweight soils on an unimproved soft soil layer[J]. Engineering Geology, 2013, 160(13): 34-43.
|
[8] |
章灿林, 黄俭才, 熊永松, 等. 不同原料土掺量的气泡轻质土耐久性研究[J]. 武汉理工大学学报, 2014, 36(8): 32-36. (ZHANG Can-lin, HUANG Jian-cai, XIONG Yong-song, et al. Durability of foamed cement banking with raw soil[J]. Journal of Wuhan University of Technology, 2014, 36(8): 32-36. (in Chinese))
|
[9] |
刘 楷, 李仁民, 杜延军, 等. 气泡混合轻质土干湿循环和硫酸钠耐久性试验研究[J]. 岩土力学, 2015, 36(增刊1): 362-366. (LIU Kai, LI Ren-min, DU Yan-jun, et al. A durability experimental study of lightweight soil subjected to wetting-drying cycles and sodium sulfate soaking[J]. Rock and Soil Mechanics, 2015, 36(S1): 362-366. (in Chinese))
|
[10] |
吴 瑾, 王晨霞, 徐 贾, 等. 疲劳荷载下锈蚀钢筋混凝土梁弯曲性能试验研究[J]. 土木工程学报, 2012, 45(10): 118-124. (WU Jin, WANG Chen-xia, XU Jia, et al. Study on flexural behavior of corroded reinforced concrete beams under fatigue loads[J]. China Civil Engineering Journal, 2012, 45(10): 118-124. (in Chinese))
|
[11] |
方 志, 向 宇, 匡 镇, 等. 钢纤维含量对活性粉末混凝土抗疲劳性能的影响[J]. 湖南大学学报 (自然科学版), 2011, 38(6): 6-12. (FANG Zhi, XIANG Yu, KUANG Zhen, et al. Fatigue properties of reactive powder concrete with different steel fiber ratios[J]. Journal of Hunan University (Natural Sciences), 2011, 38(6): 6-12. (in Chinese))
|
[12] |
CJJ/T 177—2012气泡混合轻质土填筑工程技术规程[S]. 北京: 中国建筑工业出版社, 2012. (CJJ/T 177—2012 Technical specification for foamed mixture lightweight soil filling engineering[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese))
|
[13] |
JTGB01—2014公路工程技术标准[S]. 北京: 人民交通出版社, 2014. (JTGB01—2014 Technical standard of highway engineering[S]. Beijing: China Communications Press, 2014. (in Chinese))
|
[14] |
刘 凯, 罗仁安, 郑 萍, 等. 混凝土高频疲劳加速寿命试验[J]. 上海大学学报 (自然科学版), 2009, 15(2): 205-210. (LIU Kai, LUO Ren-an, ZHENG Ping, et al. High frequency fatigue accelerated life test of concrete[J]. Journal of Shanghai University (Natural Science), 2009, 15(2): 205-210. (in Chinese))
|
[15] |
中国电子技术标准化研究所. 可靠性试验用表[M]. 北京:国防工业出版社, 1987. (China Electronics Standardization Institute. Table for reliability test[M]. Beijing: National Defend Industry Press, 1987. (in Chinese))
|
[1] | HE Yu-qi, LIAO Hong-jian, DONG Qi, NIU Bo, LIU Hu. Experimental study on strength characteristics of geogrid-reinforced loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 181-185. DOI: 10.11779/CJGE2021S1033 |
[2] | GAO Lei, HU Guo-hui, CHEN Yong-hui, HU Yan-jie, GONG Yun-hao. Triaxial tests clay reinforced by basalt fiber[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 198-203. DOI: 10.11779/CJGE2017S1039 |
[3] | HU You-chang, JIN Shao-wei, SONG Liang, MAO Ai-min, LIU Jie. Stability analysis of reinforced soil slopes based on observation of reinforcement-effected strip[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 228-234. DOI: 10.11779/CJGE201702005 |
[4] | SHANGGUAN Shi-qing, YANG Min, CHEN Fei, GUO Jun-dong, ZHANG Jun-feng. Interaction of reinforced cushion and pile-soil system in embankments based on principle of minimum potential energy[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1264-1270. DOI: 10.11779/CJGE201507012 |
[5] | JIA Liang, ZHU Yan-peng, LAI Chun-jing. Calculation of bar tension in reinforced earth retaining wall under earthquake load[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 412-417. |
[6] | PENG Fang-le, CAO Yan-bo. FEM analysis of effect of reinforced layer numbers on bearing capacity and deformation of reinforced-sand retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1700-1707. |
[7] | LIU Feiyu, CAI Yuanqiang, XU Changjie, WANG Jun. Parametric study of reinforced pavements on soft clay under traffic loading[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1659-1664. |
[8] | ZHANG Mengxi, MIN Xing. Triaxial tests on sand reinforced with one-layer 3D reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 931-936. |
[9] | ZHANG Xingqiang, YAN Shuwang, DENG Weidong. Principle analysis of reinforced pavement under automobile loading[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 94-98. |
[10] | Wu Jinghai, Wang Dequn, Chen Huan. Study on geosynthetic reinforced sand by triaxial compression test[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 199-204. |