Citation: | LIU Xin, GAN Liang-qin, SHENG Ke, HONG Bao-ning. Experimental study on service life of foamed mixture lightweight soil based on method of accelerated stress tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1793-1799. DOI: 10.11779/CJGE201710006 |
[1] |
何国杰, 丁振洲, 郑颖人.气泡混合轻质土的研制及其性能[J]. 地下空间与工程学报, 2009, 5(1): 18-22. (HE Guo-jie, DING Zhen-zhou, ZHENG Ying-ren. Preparation of bubble mixed light soil and its properties[J]. Journal of Underground Space and Engineering, 2009, 5(1): 18-22. (in Chinese))
|
[2] |
陈永辉, 石刚传, 曹德洪, 等. 气泡混合轻质土置换路基控制工后沉降研究[J]. 岩土工程学报, 2011, 33(12): 1854-1862. (CHEN Yong-hui, SHI Gang-chuan, CAO De-hong, et al. Control of post-construction settlement by replacing subgrade with foamed cement banking[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1854-1862. (in Chinese))
|
[3] |
KAMEI T, TAKASHIMA J I, SHIBI T. Temperature effects on unconfined compressive strength and microstructure of foamed mixture lightweight soil containing flaked polyethylene terephthalate (PET) [J]. Soils and Foundations, 2008, 48(6): 833-842.
|
[4] |
JONGPRADIST P. Effective void ratio for assessing the mechanical properties of cement-clay admixtures at high water content[J]. Journal of Geotechnical and Geo- environmental Engineering, 2011, 137: 621-627.
|
[5] |
KIKUCHI Y, NAGATOME T, MIZUTANI T A. The effect of air foam inclusion on the permeability and absorption properties of light weight soil[J]. Soils and Foundations, 2011, 51(1): 151-165.
|
[6] |
PARK H I, KIM Y T. Prediction of strength of reinforced lightweight soil using an artificial neural network[J]. Engineering Computations, 2011, 28(5): 600-615.
|
[7] |
KIM T H, KIM T H, KANG G C. Performance evaluation of road embankment constructed using lightweight soils on an unimproved soft soil layer[J]. Engineering Geology, 2013, 160(13): 34-43.
|
[8] |
章灿林, 黄俭才, 熊永松, 等. 不同原料土掺量的气泡轻质土耐久性研究[J]. 武汉理工大学学报, 2014, 36(8): 32-36. (ZHANG Can-lin, HUANG Jian-cai, XIONG Yong-song, et al. Durability of foamed cement banking with raw soil[J]. Journal of Wuhan University of Technology, 2014, 36(8): 32-36. (in Chinese))
|
[9] |
刘 楷, 李仁民, 杜延军, 等. 气泡混合轻质土干湿循环和硫酸钠耐久性试验研究[J]. 岩土力学, 2015, 36(增刊1): 362-366. (LIU Kai, LI Ren-min, DU Yan-jun, et al. A durability experimental study of lightweight soil subjected to wetting-drying cycles and sodium sulfate soaking[J]. Rock and Soil Mechanics, 2015, 36(S1): 362-366. (in Chinese))
|
[10] |
吴 瑾, 王晨霞, 徐 贾, 等. 疲劳荷载下锈蚀钢筋混凝土梁弯曲性能试验研究[J]. 土木工程学报, 2012, 45(10): 118-124. (WU Jin, WANG Chen-xia, XU Jia, et al. Study on flexural behavior of corroded reinforced concrete beams under fatigue loads[J]. China Civil Engineering Journal, 2012, 45(10): 118-124. (in Chinese))
|
[11] |
方 志, 向 宇, 匡 镇, 等. 钢纤维含量对活性粉末混凝土抗疲劳性能的影响[J]. 湖南大学学报 (自然科学版), 2011, 38(6): 6-12. (FANG Zhi, XIANG Yu, KUANG Zhen, et al. Fatigue properties of reactive powder concrete with different steel fiber ratios[J]. Journal of Hunan University (Natural Sciences), 2011, 38(6): 6-12. (in Chinese))
|
[12] |
CJJ/T 177—2012气泡混合轻质土填筑工程技术规程[S]. 北京: 中国建筑工业出版社, 2012. (CJJ/T 177—2012 Technical specification for foamed mixture lightweight soil filling engineering[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese))
|
[13] |
JTGB01—2014公路工程技术标准[S]. 北京: 人民交通出版社, 2014. (JTGB01—2014 Technical standard of highway engineering[S]. Beijing: China Communications Press, 2014. (in Chinese))
|
[14] |
刘 凯, 罗仁安, 郑 萍, 等. 混凝土高频疲劳加速寿命试验[J]. 上海大学学报 (自然科学版), 2009, 15(2): 205-210. (LIU Kai, LUO Ren-an, ZHENG Ping, et al. High frequency fatigue accelerated life test of concrete[J]. Journal of Shanghai University (Natural Science), 2009, 15(2): 205-210. (in Chinese))
|
[15] |
中国电子技术标准化研究所. 可靠性试验用表[M]. 北京:国防工业出版社, 1987. (China Electronics Standardization Institute. Table for reliability test[M]. Beijing: National Defend Industry Press, 1987. (in Chinese))
|
[1] | LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228 |
[2] | JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022 |
[3] | XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012 |
[4] | HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013 |
[5] | ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021 |
[6] | HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019 |
[7] | LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. |
[8] | LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648. |
[9] | Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799. |
[10] | XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402. |