• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Hua-ning, GONG Hao, LI Fu-gen, JIANG Ming-jing. Analytical solutions to micro-bond model for particles considering width and thickness of bond[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 822-831. DOI: 10.11779/CJGE201705006
Citation: WANG Hua-ning, GONG Hao, LI Fu-gen, JIANG Ming-jing. Analytical solutions to micro-bond model for particles considering width and thickness of bond[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 822-831. DOI: 10.11779/CJGE201705006

Analytical solutions to micro-bond model for particles considering width and thickness of bond

More Information
  • Received Date: January 29, 2016
  • Published Date: May 24, 2017
  • In the DEM simulation of mechanical response of methane hydrate or weathered rock, the real shape and size of inter-particle bond significantly affect the macro-mechanical properties of the materials, therefore it is necessary to build a micro-bond model considering the width and thickness of the bond. The modified high-accuracy analytical solution is proposed according to the Dvorkin theory to determine the stiffness and strength of inter-granular bond in DEM. By introducing the symmetric displacement function, the symmetry and accuracy of the stress field are improved compared with the solution by the Dvorkin theory. The provided solutions are consistent with the FEM analysis results on a qualitative and quantitative level. For an application, the parametric investigation is carried out according to the analytical solutions. The influences of width and thickness on the stiffness of the bond are discussed firstly, and then the fitting formulas for three bond stiffnesses for the common materials are provided. Subsequently, the twin shear unified strength theory is applied to give the initial failure domain for the contact model for brittle and plastic bond materials, respectively, and the tensile/compressive-shear strength envelope is also put forward. The proposed solutions can provide a large number of data for mechanical response of the bond, and assist to set up the failure criterion under complex loading, which can validate and supply the experimental data in establishing the micro-bond model in DEM.
  • [1]
    CUCCOVILLO T, COOP M R. Yielding and pre-failure deformation of structured sands[J]. Géotechnique, 1997, 47(3): 491-508.
    [2]
    CUNDALL P A, STRACK O D L. The discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [3]
    王泳嘉, 邢纪波. 离散单元法及其在岩土力学中的应用 [M]. 沈阳: 东北工学院出版社, 1991. (WANG Yong-jia, XING Ji-bo. Discrete element method and its applications to geotechnical engineering[M]. Shenyang: Northeast University of Technology Press, 1991. (in Chinese))
    [4]
    JIANG M J, YU H S, HARRIS D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005, 32(5): 340-357.
    [5]
    蒋明镜, 贺 洁, 周雅萍. 考虑水合物胶结厚度的深海能源土粒间胶结模型研究[J]. 岩土力学, 2014, 35(5): 1231-1240. (JIANG Ming-jing, HE Jie, ZHOU Ya-ping. Inter-particle bonded model of deep-sea methane hydrate-bearing soil considering methane hydrate bond thickness[J]. Rock and Soil Mechanics, 2014, 35(5): 1231-1240. (in Chinese))
    [6]
    蒋明镜, 张 宁, 陈 贺. 岩石化学风化时效效应的离散元模拟[J]. 岩土力学, 2014, 35(12): 3577-3584. (JIANG Ming-jing, ZHANG Ning, CHEN He. Discrete element simulation of aging effect of chemical weathering on rock[J]. Rock and Soil Mechanics, 2014, 35(12): 3577-3584. (in Chinese))
    [7]
    蒋明镜, 张 宁, 金树楼. 不同胶结宽度粒间胶结特性试验研究[J]. 岩土力学, 2015, 36(4): 928-936. (JIANG Ming-jing, ZHANG Ning, JIN Shu-lou. Experimental study of mechanical behaviors of bonded granules under different bond width[J]. Rock and Soil Mechanics, 2015, 36(4): 928-936. (in Chinese))
    [8]
    JIANG M J, LIU F, ZHOU Y. A bond failure criterion for DEM simulations of cemented geomaterials considering variable bond thickness[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(18): 1871-1897.
    [9]
    孙 超, 刘 芳, 蒋明镜. 不同厚度及边界胶结颗粒抗压特性离散元分析[J]. 地下空间与工程学报, 2015, 11(1): 70-83. (SUN Chao, LIU Fang, JIANG Ming-jing. DEM analyses on effects of bond thickness and boundary condition on the compressive response of bonded granules[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(1): 70-83. (in Chinese))
    [10]
    POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
    [11]
    OBERMAYR M, DRESSLER K, VRETTOS C, et al. A bonded-particle model for cemented sand[J]. Computers and Geotechnics, 2013, 49: 299-313.
    [12]
    邢纪波, 俞良群, 张瑞丰. 用于模拟颗粒增强复合材料破坏过程的梁—颗粒细观模型的试验验证[J]. 试验力学, 1998, 13(3): 377-382. (XING Ji-bo, YU Liang-qun, ZHANG Rui-feng. Experimental verification of meso- mechanical beam particle model for simulating progressive failure in particulate composite materials[J]. Journal of Experimental Mechanics, 1998, 13(3): 377-382. (in Chinese))
    [13]
    DVORKIN J, MAVKO G, NUR A. The effect of cementation on the elastic properties of granular material[J]. Mechanics of Materials, 1991, 12(3/4): 207-217.
    [14]
    DVORKIN J. Large strains in cemented granular aggregates: elastic-plastic cement[J]. Mechanics of Materials, 1996, 23(1): 29-44.
    [15]
    LIU F, JIANG M J, SUN C, et al. On the size-dependent compressive resistance of bonded granules[J]. Géotechnique Letters, 2015, 5:104-111.
    [16]
    SHEN Z F, JIANG M J, WAN R. Numerical study of inter-particle bond failure by 3D discrete element method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(4): 523-545.
    [17]
    DELENNE J Y, EL YOUSSOUFI M S, CHERBLANC F, et al. Mechanical behaviour and failure of cohesive granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(15): 1577-1594.
    [18]
    蒋明镜, 贺 洁, 周雅萍. 基于微观胶结厚度模型的深海能源土宏观力学特性离散元分析[J]. 岩土力学, 2013, 34(9): 2673-2681. (JIANG Ming-jing, HE Jie, ZHOU Ya-ping, Distinct element analysis of macro-mechanical properties of deep-sea methane hydrate-bearing soil using micro-bond thickness model[J]. Rock and Soil Mechanics, 2013, 34(9): 2673-2681. (in Chinese)).
    [19]
    JIANG M J, ZHANG N, CUI L, et al. A size-dependent bond failure criterion for cemented granules based on experimental studies[J]. Computers and Geotechnics, 2015, 69:182-198.
    [20]
    YU M H, HE L N. A new model and theory on yield and failure of materials under the complex stress state[C]// Proceedings of the Mechanical Behaviour of Materials. Kyoto, 1991.
  • Cited by

    Periodical cited type(33)

    1. 张鑫磊,纪展鹏,黄凯,王志华,高洪梅,胡正阳. 可液化土体中浅埋管廊上浮机制和抗浮措施研究. 岩石力学与工程学报. 2024(02): 510-520 .
    2. 石卫,王瑞,王启耀. 地下结构抗震设计反应位移法的研究综述. 科学技术与工程. 2024(01): 61-71 .
    3. 侯本伟,游丹,范世杰,许成顺,钟紫蓝. 基于网络效率的城市轨道交通网络抗震韧性评估. 清华大学学报(自然科学版). 2024(03): 509-519 .
    4. 王国波,王鸿杰,王建宁,金立国,赵丁凤. 基于耐震时程法的地下结构序列地震作用抗震性能研究. 振动与冲击. 2024(15): 261-268+276 .
    5. 李维沈,李文婷,徐昊哲. 地下结构抗震性能指标限值的影响因素研究. 自然灾害学报. 2024(06): 178-191 .
    6. 蒋家卫,许成顺,杜修力,陈国兴,许紫刚. 浅埋地铁车站地下框架结构抗震设计的最优地震动强度指标. 岩土工程学报. 2023(02): 318-326 . 本站查看
    7. 苗晗,蒋录珍,安军海,李莎,马晓明. 叠合装配式管廊结构抗震性能水平与评价方法研究. 震灾防御技术. 2023(01): 53-64 .
    8. 樊一凡,陈之毅. 基于优化选点的土层剪切波速随机性对地铁车站结构抗震性能的影响研究. 土木工程学报. 2023(08): 174-183 .
    9. 钟紫蓝,冯立倩,史跃波,温卫平,赵密. 序列型地震作用下地铁车站损伤分析. 岩土工程学报. 2023(08): 1586-1594 . 本站查看
    10. 白立广. 地下双层车站盖挖段主体结构施工技术. 建筑机械. 2023(08): 63-67 .
    11. 王伟,刘英,庄海洋,赵凯,陈国兴. 考虑内部结构的大直径盾构隧道抗震性能. 隧道与地下工程灾害防治. 2023(03): 78-85 .
    12. 赵畅,于旭,庄海洋,单志承,吴晓飞. 考虑SSI效应的基础隔震框架结构抗震性态水平分析. 防灾减灾工程学报. 2023(05): 1024-1034 .
    13. 邱大鹏,陈健云,王文明,曹翔宇. 考虑竖向地震作用的大型地下框架结构易损性分析. 岩土工程学报. 2023(12): 2537-2546 . 本站查看
    14. 游裕鑫,邵国建,李昂,刘旭. 异跨框架式地铁地下车站结构三维非线性地震响应分析. 河南科学. 2022(04): 610-617 .
    15. 罗永鸿,张梓鸿,许成顺,李洋. 基于Pushover分析方法的多层地铁车站地震反应研究. 震灾防御技术. 2022(01): 143-153 .
    16. 孟啸,李宏远,石少华. 超大型地下交通枢纽结构关键断面抗震性能分析. 建筑结构. 2022(S1): 820-825 .
    17. 张椿民. 地下多层地铁车站结构抗震设计对比分析. 市政技术. 2022(12): 50-58 .
    18. 范世杰,游丹,侯本伟,许成顺. 基于网络效率的城市轨道交通网络震后性能评估. 防灾减灾工程学报. 2022(06): 1165-1173+1190 .
    19. 殷琳,舒恩,楼梦麟,蔡海兵. 地下结构地震反应的平面计算模型研究. 震灾防御技术. 2022(04): 727-734 .
    20. 张季,蒋玮,谭灿星,许紫刚,唐柏赞,庄海洋. SV波斜入射时地铁车站-土-邻近地表框架结构动力相互作用分析. 震灾防御技术. 2022(04): 622-631 .
    21. 李文婷,李维沈,陈春霞,徐昊哲. 地下结构抗震性能及指标体系研究综述. 建筑结构. 2022(S2): 754-758 .
    22. 王国波,刘强,王鸿杰,王建宁,董正方. 震后地下结构在火灾下的力学性能初步分析. 岩土工程学报. 2022(S2): 30-35 . 本站查看
    23. 王瑞,胡志平,任翔,李芳涛,温馨. 2.5D有限元建模关键问题——边界条件、网格划分及计算域选取. 振动工程学报. 2021(01): 80-88 .
    24. 王程,汤鹏,庄海洋,杨明. 考虑错缝拼装的过江大直径管廊盾构隧道抗震性能研究. 自然灾害学报. 2021(01): 116-123 .
    25. 许紫刚,许成顺,杜修力,吴晔. 基于拟静力推覆分析的大开车站和区间隧道地震损伤研究. 岩土工程学报. 2021(07): 1182-1191+1373 . 本站查看
    26. 丁录董,徐军林,庄海洋,陈文斌. 预制+现浇装配式地铁地下车站结构地震反应的三维有限元分析. 世界地震工程. 2021(04): 157-166 .
    27. 左红伟,马甲宽,任翔,白兰,喻畅. 双连拱地铁隧道衬砌结构地震动力响应特征. 科学技术与工程. 2021(30): 13139-13147 .
    28. 周兵,江中华. 地下车站结构安全状态综合评价模型与应用. 现代隧道技术. 2021(S1): 1-10 .
    29. 朱雯蕾,李宁. 青岛地铁某地下车站结构抗震数值模拟计算分析. 现代城市轨道交通. 2020(01): 65-72 .
    30. 钟紫蓝,申轶尧,甄立斌,张成明,赵密,杜修力. 地震动强度参数与地铁车站结构动力响应指标分析. 岩土工程学报. 2020(03): 486-494 . 本站查看
    31. 王建宁,马国伟,窦远明,庄海洋,付继赛. 异跨框架式地铁地下车站结构抗震性能水平与评价方法研究. 振动与冲击. 2020(10): 92-100 .
    32. 杨靖,云龙,庄海洋,任佳伟,陈文斌. 三层三跨框架式地铁地下车站结构抗震性能水平研究. 岩土工程学报. 2020(12): 2240-2248 . 本站查看
    33. 马超,王作虎,路德春,杜修力. CFRP加固地铁车站结构中柱地震损伤评价研究. 岩土工程学报. 2020(12): 2249-2256 . 本站查看

    Other cited types(24)

Catalog

    Article views (394) PDF downloads (378) Cited by(57)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return