• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
NIU Ya-qiang, WANG Xu, LIAO Meng-ke, JIANG Dai-jun, LIU De-ren. Experimental study on triaxial strength and deformation characteristics of frozen-improved loess[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 198-203. DOI: 10.11779/CJGE2016S2032
Citation: NIU Ya-qiang, WANG Xu, LIAO Meng-ke, JIANG Dai-jun, LIU De-ren. Experimental study on triaxial strength and deformation characteristics of frozen-improved loess[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 198-203. DOI: 10.11779/CJGE2016S2032

Experimental study on triaxial strength and deformation characteristics of frozen-improved loess

More Information
  • Received Date: May 18, 2016
  • Published Date: October 19, 2016
  • In order to study the deformation and triaxial strength behaviors of frozen loess and frozen-improved loess, a series of triaxial compression tests are conducted under confining pressure varying from 1 to 15 MPa at -6 °C. The results show that the shape of stress-strain curves presents strain softening and strain hardening successively. Both the initial tangent modulus and the volumetric strain increase at first then decrease with the increase of confining pressure. The triaxial strength of frozen loess and frozen-improved loess increases at first then decreases with the increase of confining pressure. The strength of frozen loess is enhanced after being improved, and the improvement effect of cement is more significant. Based on the Mohr-Coulomb criterion, the variation laws of generalized cohesion and internal friction angle with confining pressures of frozen loess and frozen-improved loess are obtained. Meanwhile, a nonlinear Mohr-Coulomb strength criterion for frozen loess and frozen-improved loess is proposed, which reflects the phenomenon that the triaxial strength changes nonlinearly with the increase of the confining pressure.
  • [1]
    牛亚强, 王 旭, 郑 静, 等. 侧向约束防渗路基新结构防渗效果试验研究[J]. 岩土力学, 2015, 36(增刊2): 252-258. (NIU Ya-qiang, WANG Xu, ZHENG Jing, et al. Experimental research on anti-seepage effect of new embankment structure of lateral-constraint and seepage control[J]. Rock and Soil Mechanics, 2015, 36(S2): 252-258. (in Chinese))
    [2]
    郭婷婷, 张伯平, 田志高, 等. 黄土二灰土工程特性研究[J]. 岩土工程学报, 2004, 26(5): 719-721. (GUO Ting-ting, ZHANG Bo-ping, TIAN Zhi-gao, et al. Study on engineering characteristic of lime-flyash loess[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 719-721. (in Chinese))
    [3]
    夏 琼, 杨有海, 耿 煊. 粉煤灰与石灰、水泥改良黄土填料的试验研究[J]. 兰州交通大学学报, 2008, 27(3): 40-46. (XIA Qiong, YANG You-hai, GEN Xuan. Experimental study on flyash-lime or flyash-cement loess filling[J]. Journal of Lanzhou Jiaotong University, 2008, 27(3): 40-46. (in Chinese))
    [4]
    徐 实, 杨有海, 耿 煊, 等. 石灰改性黄土的强度特性试验研究[J]. 兰州交通大学学报, 2006, 25(6): 97-100. (XU Shi, YANG You-hai, GENG Xuan, et al. Experimental study on strength property of lime improved loess[J]. Journal of Lanzhou Jiaotong University, 2006, 25(6): 97-100. (in Chinese))
    [5]
    杨有海, 梁 波, 丁 立. 粉煤灰与石灰、水泥拌合料强度特性试验研究[J]. 岩土工程学报, 2001, 23(2): 227-230. (YANG You-hai, LIANG Bo, DING Li. Experimental study on the strength behaviors of flyash-lime or flyash-cement[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 227-230. (in Chinese))
    [6]
    李志清, 余文龙, 范林峰, 等. 改良黄土强度特性与工程处置试验研究[J]. 工程地质学报, 2011, 19(1): 116-121. (LI Zhi-qing, YU Wen-long, FAN Lin-feng, et al. Experimental research on strength characteristics and engineering treatment of improved loess soil[J]. Journal of Engineering Geology, 2011, 19(1): 116-121. (in Chinese))
    [7]
    张向东, 曹启坤, 潘 宇. 二灰改良土动力特性试验研究[J]. 岩土力学, 2010, 31(8): 2560-2564. (ZHANG Xiang-dong, CAO Qi-kun, PAN Yu. Experiment research of lime-fly ash soil’s dynamics characteristics[J]. Rock and Soil Mechanics, 2010, 31(8): 2560-2564. (in Chinese))
    [8]
    王银梅, 程佳明, 高立成. 冻融循环对化学改良黄土性能的影响[J]. 太原理工大学学报, 2013, 44(4): 536-538. (WANG Yin- mei, CHENG Jia-ming, GAO Li-cheng. Influence of freeze-thaw cycles on properties of chemical improved loess[J]. Journal of Taiyuan University of Technology, 2013, 44(4): 536-538.
    [9]
    王天亮, 刘建坤, 田亚护. 冻融循环作用下水泥及石灰改良土静力特性研究[J]. 岩土力学, 2011, 32(1): 193-198. (WANG Tian-liang, LIU Jian-kun, TIAN Ya-hu. Static properties of cement-and lime-modified soil subjected to freeze-thaw cycles[J]. Rock and Soil Mechanics, 2011, 32(1): 193-198. (in Chinese))
    [10]
    马 巍, 徐学祖, 张力新. 冻融循环对石灰粉土剪切强度特性的影响[J]. 岩土工程学报, 1999, 21(2): 158-160. (MA Wei, XU Xue-zu, ZHANG Li-xin. Influence of frost and thaw cycles on shear strength of lime silt[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 158-160. (in Chinese))
    [11]
    吕擎峰, 李晓媛, 赵彦旭, 等. 改性黄土的冻融特性[J]. 中南大学学报, 2014, 45(3): 819-825. (LÜ Qing-feng, LI Xiao-yuan, ZHAO Yan-xu, et al. Properties of modified loess under freeze-thaw cycles[J]. Journal of Central South University, 2014, 45(3): 819-825. (in Chinese))
    [12]
    战高峰, 张 群, 朱 福, 等. 冻融循环对石灰处置粉质黏土静强度影响研究[J]. 岩土力学, 2015, 36(增刊2): 351-356. (ZHAN Gao-feng, ZHANG Qun, ZHU Fu, et al. Research on influence of freeze-thaw cycles on static strength of lime-treated silty clay[J]. Rock and Soil Mechanics, 2015, 36(S2): 351-356. (in Chinese))
    [13]
    赖远明, 程红彬, 高志华, 等. 冻结砂土的应力-应变关系及非线性莫尔强度准则[J]. 岩石力学与工程学报, 2007, 26(8): 1612-1617. (LAI Yuan-ming, CHENG Hong-bin, GAO Zhi-hua, et al. Stress-strain relationships and nonlinear Mohr strength criteria of frozen sand clay[J]. Journal of Rock Mechanics and Engineering, 2007, 26(8): 1612-1617. (in Chinese))
    [14]
    GB/T50123—1999土工试验方法标准[S]. 1999. (GB/T50123—1999 Standard for soil test method[S]. 1999. (in Chinese))
    [15]
    马 巍, 吴紫汪, 盛 煌. 围压对冻土强度特性的影响[J].岩土工程学报, 1995, 17(5): 7-11. (MA Wei, WU Zi-wang, SHENG Huang. Effect of confining pressure on strength behaviour of frozen soil[J]. Journal of Geotechnical Engineering, 1995, 17(5): 7-11. (in Chinese))
    [16]
    YANG Yu-gui, LAI Yuan-ming, CHANG Xiao-xiao. Laboratory and theoretical investigations on the deformation and strength behaviors of artificial frozen soil[J]. Cold Regions Science and Technology, 2010, 64(1): 39-45.
  • Related Articles

    [1]LI Li, LIU Zi-ru. Method for lateral forces in stability analysis of concave slopes in plan view[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 137-141. DOI: 10.11779/CJGE2018S2028
    [2]QIN Zhong-guo, ZHANG Xiang-yang. New method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 946-951. DOI: 10.11779/CJGE201605022
    [3]CAO Ping, LIU Di-xu. Application of improved CSMR method to opencast mining slopes[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1544-1548. DOI: 10.11779/CJGE201508027
    [4]LEI Guo-hui, ZHENG Qiang. Issues on concepts of effective stress and seepage force arising from anatomizing Swedish slice method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 667-676.
    [5]WANG Hongbo, SHAO Longtan, XIONG Baolin. Improved method to determine parameters n and hs of a hypoplastic constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1173-1176.
    [6]ZHANG Qianfei, WU Zhongru. The improved cut-off negative pressure method for unsteady seepage flow with free surface[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 48-54.
    [7]SHI Weimin, ZHENG Yingren, TANG Boming, ZHANG Luyu. Accuracy and application range of Imbalance Thrust Force Method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 313-317.
    [8]WANG Jianfeng. An analytical method of the stabilizing force of piles for landslide control using Janbu’s generalized procedure of slices[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 455-458.
    [9]Wang Zhiyin, Li Yunpeng. Some improvements in the numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(6): 36-39.
    [10]Zhang Xiong. lmProved Slice Method for Slope Stability Analysis[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 84-92.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return