Citation: | LI Xi, ZHANG Sheng, SHENG Dai-chao, MA Xin-yan. Reasonable sample capacity for grain-size analysis tests based on sampling reliability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2122-2127. DOI: 10.11779/CJGE201611024 |
[1] |
ZHANG S, TONG C X, LI X, et al. A new method for studying the evolution of particle breakage[J]. Géotechnique, (accepted), 2015.
|
[2] |
童晨曦, 张 升, 李 希, 等. 基于 Markov 链的岩土材料颗粒破碎演化规律研究[J]. 岩土工程学报, 2015, 37(5): 870-877. (TONG Chen-xi, ZHANG Sheng, LI Xi, et. al. Evolution of geotechnical materials based on Markov chain considering particle crushing[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 870-877. (in Chinese))
|
[3] |
李 希, 张 升, 童晨曦, 等. 基于线性拟合的颗粒材料破碎状态表征[J]. 岩土力学, 2015, 36(增刊): 305-309. (LI Xi, ZHANG Sheng, TONG Chen-xi, et. al. A new method for characterizing particle crushing state of granular materials based on linear fitting[J]. Rock and Soil Mechanics, 2015, 36(S0): 305-309. (in Chinese))
|
[4] |
GB/T 14684—2011 建设用砂[S] (GBT 14684—2011 Sand for construction[S]. 2011. (in Chinese))
|
[5] |
GB/T 14684—2011 建筑用碎石、卵石[S]. 2011. (GBT 14684—2011 Pebble and crushed stone for construction[S]. 2011. (in Chinese))
|
[6] |
JGJ 52—2006 普通混凝土用砂、石质量及检验方法标准[S]. 2006. (JGJ 52—2006 Standard for technical requirements and test method of sand and crushed stone (or gravel) for ordinary concrete[S]. 2006. (in Chinese))
|
[7] |
DL/T 5151—2014 水工混凝土砂石骨料试验规程[S]. 2014. (DL/T 5151—2014 Test code for hydraulic concrete[S]. 2014. (in Chinese))
|
[8] |
SL 251—2010 水利水电工程天然建筑材料勘察规程[S]. 2015. (SL 251—2000 code for investigation of natural building material for water resources and hydropower project[S]. 2010. (in Chinese))
|
[9] |
张瑞瑾. 河流泥沙动力学[M]. 北京: 中国水利水电出版社, 1998. (ZHANG Rui-jin. River sediment dynamics[M]. Beijing: China Water Conservancy and Hydropower Press, 1998)
|
[10] |
KO Y D, SHANG H. A neural network-based soft sensor for particle size distribution using image analysis[J]. Powder Technology, 2011, 212(2): 359-366.
|
[11] |
ALLEN T. Particle size measurement[M]. New York: Springer, 2013.
|
[12] |
FONSECA J, O’SULLIVAN C, COOP M R, et al. Non-invasive characterization of particle morphology of natural sands[J]. Soils and Foundations, 2012, 52(4): 712-722.
|
[1] | CUI Feilong, YANG Junchao, WANG Jinshang, ZHANG Yatao, LI Lihua. Influences of ambient temperature on temperature field and mechanical behaviors of underground pipe galleries[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 87-91. DOI: 10.11779/CJGE2024S20007 |
[2] | HONG Zequn, SHI Rongjian, YUE Fengtian, HAN Lei. Analytical solutions of steady-state temperature field for large-section freezing with rectangular layout of single-ring holes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1653-1663. DOI: 10.11779/CJGE20220700 |
[3] | YANG Ping, CHEN Jin, ZHANG Shang-gui, WAN Chao-dong. Whole range monitoring for temperature and displacement fields of cross passage in soft soils by AGF[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2226-2234. DOI: 10.11779/CJGE201712011 |
[4] | GU Yan-chang, WANG Shi-jun, PANG Qiong, ZHOU Chun-xu. Feasibility of temperature field feeding back seepage field for earth dams[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1721-1726. DOI: 10.11779/CJGE201409020 |
[5] | LIU Quan-sheng, LIU Xue-wei. Preliminary research on numerical manifold method for temperature field of fractured rock mass[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 635-642. |
[6] | ZHANG Wei, SHI Bin, SUO Wenbin, CAI Yi, WANG Baojun. Monitoring and application of distributed optical fiber sensors in transient temperature field of frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 723-728. |
[7] | ZHANG Xuefu, YU Wenbing, LIU Zhiqiang. Three-dimensional nonlinear analysis for coupled problem of seepage field and temperature field of cold regions tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1095-1100. |
[8] | WANG Renhe, WANG Wei. Analysis for features of the freezing temperature field under deflective pipes[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(6): 658-661. |
[9] | Chen Wenhua, Zhao Chenggang, Zeng Qiaoling, You Changlong. Artificial boundary conditions and simulation of temperature and moisture of subsoil[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 545-548. |
[10] | Lai Yuanming, Wu Ziwang, Zhu Yuanlin, Zhu Linnan. Nonlinear analyses for the couple problem of temperature, seepage and stress fields in cold region tunnels[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 529-533. |
1. |
王博通,宋焕东,高樯,葛英兰,刘国祥,臧洋. 多年冻土区桩基础荷载传递规律及影响因素模拟研究. 公路. 2025(02): 154-162 .
![]() | |
2. |
唐丽云,丁冰,郑建国,许培智,邱培勇. 寒区冻土桩基承载特性研究现状与展望. 岩土工程技术. 2024(03): 253-262 .
![]() | |
3. |
孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
![]() | |
4. |
胡峻晖,崔宏环,王跃庚,李续靖. 细粒含量对冻土-桩界面剪切特性影响研究. 力学季刊. 2024(03): 842-854 .
![]() | |
5. |
邓声君,张金海,陈浩林,蒋刚,龚晓南. 基于分数阶导数的冻土–结构接触面剪切蠕变模型研究. 岩石力学与工程学报. 2024(12): 3070-3080 .
![]() | |
6. |
郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 .
![]() | |
7. |
王博通,张明礼,王运华,高樯,温智,周志伟,马巍,王大雁. 分级加卸载作用下冻结界面黏弹塑性剪切蠕变解耦分析研究. 冰川冻土. 2023(06): 1849-1858 .
![]() | |
8. |
孙厚超,杨平,卜迎春,石飞停. 冻黏土与结构接触界面层单剪损伤模型. 森林工程. 2022(01): 115-123 .
![]() | |
9. |
孙厚超,马爱群,杨平,张飞. 冻黏土界面层单调剪切数值模拟及实验对比分析. 森林工程. 2022(02): 133-139 .
![]() | |
10. |
赵江涛. 黄黏土地区隧道结构体与土体接触面受力分析. 岩土工程技术. 2022(04): 267-270 .
![]() | |
11. |
孙厚超,杨平,张忠扩,陆仁艳. 循环剪切下冻黏土与结构接触面剪切异向性研究. 森林工程. 2021(06): 82-89 .
![]() | |
12. |
何鹏飞,马巍,穆彦虎,董建华,黄永庭. 冻融循环对冻土–混凝土界面冻结强度影响的试验研究. 岩土工程学报. 2020(02): 299-307 .
![]() | |
13. |
刘庆贺,王永涛,徐湘田,赵宇琴,李高升,张伟东. 冻结粉质黏土-桩基接触面剪切特性试验研究. 冰川冻土. 2020(02): 491-498 .
![]() | |
14. |
刘文博,陈璐,胡俊,曾东灵,王志鑫. 多排冻结管斜型排布温度场发展规律数值分析. 海南大学学报(自然科学版). 2020(03): 290-299 .
![]() | |
15. |
秦虎,贾剑青,李科技,马亢. 冻结条件下硫酸盐渍土与混凝土接触面力学特性试验研究. 三峡大学学报(自然科学版). 2020(06): 50-55 .
![]() | |
16. |
陈海康,梁海安,胡清波,邱思检,刘超,张龙鹏. 土-结构物接触面试验研究进展综述. 重庆建筑. 2019(09): 51-54 .
![]() | |
17. |
何爽,胡向东. 管幕冻结法钢管-冻土接触面剪切试验研究. 隧道建设(中英文). 2019(11): 1864-1870 .
![]() |