• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Xi, ZHANG Sheng, SHENG Dai-chao, MA Xin-yan. Reasonable sample capacity for grain-size analysis tests based on sampling reliability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2122-2127. DOI: 10.11779/CJGE201611024
Citation: LI Xi, ZHANG Sheng, SHENG Dai-chao, MA Xin-yan. Reasonable sample capacity for grain-size analysis tests based on sampling reliability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2122-2127. DOI: 10.11779/CJGE201611024

Reasonable sample capacity for grain-size analysis tests based on sampling reliability

More Information
  • Received Date: September 24, 2015
  • Published Date: November 19, 2016
  • In the process of determining particle size distribution in engineering fields, the sample capacity is one of determining factors to guarantee the accuracy and reliability of results. Combining with the theory of sampling reliability analysis, a theoretical method to determine the sample capacity is proposed and validated afterwards. It is found out that three indexes should be considered to obtain grading information of coarse aggregate: the total amount of particles, the degree of particle size difference, and the accuracy requirements. Besides, the proposed method may benefit engineering practice and specification perfection.
  • [1]
    ZHANG S, TONG C X, LI X, et al. A new method for studying the evolution of particle breakage[J]. Géotechnique, (accepted), 2015.
    [2]
    童晨曦, 张 升, 李 希, 等. 基于 Markov 链的岩土材料颗粒破碎演化规律研究[J]. 岩土工程学报, 2015, 37(5): 870-877. (TONG Chen-xi, ZHANG Sheng, LI Xi, et. al. Evolution of geotechnical materials based on Markov chain considering particle crushing[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 870-877. (in Chinese))
    [3]
    李 希, 张 升, 童晨曦, 等. 基于线性拟合的颗粒材料破碎状态表征[J]. 岩土力学, 2015, 36(增刊): 305-309. (LI Xi, ZHANG Sheng, TONG Chen-xi, et. al. A new method for characterizing particle crushing state of granular materials based on linear fitting[J]. Rock and Soil Mechanics, 2015, 36(S0): 305-309. (in Chinese))
    [4]
    GB/T 14684—2011 建设用砂[S] (GBT 14684—2011 Sand for construction[S]. 2011. (in Chinese))
    [5]
    GB/T 14684—2011 建筑用碎石、卵石[S]. 2011. (GBT 14684—2011 Pebble and crushed stone for construction[S]. 2011. (in Chinese))
    [6]
    JGJ 52—2006 普通混凝土用砂、石质量及检验方法标准[S]. 2006. (JGJ 52—2006 Standard for technical requirements and test method of sand and crushed stone (or gravel) for ordinary concrete[S]. 2006. (in Chinese))
    [7]
    DL/T 5151—2014 水工混凝土砂石骨料试验规程[S]. 2014. (DL/T 5151—2014 Test code for hydraulic concrete[S]. 2014. (in Chinese))
    [8]
    SL 251—2010 水利水电工程天然建筑材料勘察规程[S]. 2015. (SL 251—2000 code for investigation of natural building material for water resources and hydropower project[S]. 2010. (in Chinese))
    [9]
    张瑞瑾. 河流泥沙动力学[M]. 北京: 中国水利水电出版社, 1998. (ZHANG Rui-jin. River sediment dynamics[M]. Beijing: China Water Conservancy and Hydropower Press, 1998)
    [10]
    KO Y D, SHANG H. A neural network-based soft sensor for particle size distribution using image analysis[J]. Powder Technology, 2011, 212(2): 359-366.
    [11]
    ALLEN T. Particle size measurement[M]. New York: Springer, 2013.
    [12]
    FONSECA J, O’SULLIVAN C, COOP M R, et al. Non-invasive characterization of particle morphology of natural sands[J]. Soils and Foundations, 2012, 52(4): 712-722.
  • Related Articles

    [1]CUI Feilong, YANG Junchao, WANG Jinshang, ZHANG Yatao, LI Lihua. Influences of ambient temperature on temperature field and mechanical behaviors of underground pipe galleries[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 87-91. DOI: 10.11779/CJGE2024S20007
    [2]HONG Zequn, SHI Rongjian, YUE Fengtian, HAN Lei. Analytical solutions of steady-state temperature field for large-section freezing with rectangular layout of single-ring holes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1653-1663. DOI: 10.11779/CJGE20220700
    [3]YANG Ping, CHEN Jin, ZHANG Shang-gui, WAN Chao-dong. Whole range monitoring for temperature and displacement fields of cross passage in soft soils by AGF[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2226-2234. DOI: 10.11779/CJGE201712011
    [4]GU Yan-chang, WANG Shi-jun, PANG Qiong, ZHOU Chun-xu. Feasibility of temperature field feeding back seepage field for earth dams[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1721-1726. DOI: 10.11779/CJGE201409020
    [5]LIU Quan-sheng, LIU Xue-wei. Preliminary research on numerical manifold method for temperature field of fractured rock mass[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 635-642.
    [6]ZHANG Wei, SHI Bin, SUO Wenbin, CAI Yi, WANG Baojun. Monitoring and application of distributed optical fiber sensors in transient temperature field of frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 723-728.
    [7]ZHANG Xuefu, YU Wenbing, LIU Zhiqiang. Three-dimensional nonlinear analysis for coupled problem of seepage field and temperature field of cold regions tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1095-1100.
    [8]WANG Renhe, WANG Wei. Analysis for features of the freezing temperature field under deflective pipes[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(6): 658-661.
    [9]Chen Wenhua, Zhao Chenggang, Zeng Qiaoling, You Changlong. Artificial boundary conditions and simulation of temperature and moisture of subsoil[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 545-548.
    [10]Lai Yuanming, Wu Ziwang, Zhu Yuanlin, Zhu Linnan. Nonlinear analyses for the couple problem of temperature, seepage and stress fields in cold region tunnels[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 529-533.
  • Cited by

    Periodical cited type(17)

    1. 王博通,宋焕东,高樯,葛英兰,刘国祥,臧洋. 多年冻土区桩基础荷载传递规律及影响因素模拟研究. 公路. 2025(02): 154-162 .
    2. 唐丽云,丁冰,郑建国,许培智,邱培勇. 寒区冻土桩基承载特性研究现状与展望. 岩土工程技术. 2024(03): 253-262 .
    3. 孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
    4. 胡峻晖,崔宏环,王跃庚,李续靖. 细粒含量对冻土-桩界面剪切特性影响研究. 力学季刊. 2024(03): 842-854 .
    5. 邓声君,张金海,陈浩林,蒋刚,龚晓南. 基于分数阶导数的冻土–结构接触面剪切蠕变模型研究. 岩石力学与工程学报. 2024(12): 3070-3080 .
    6. 郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 . 本站查看
    7. 王博通,张明礼,王运华,高樯,温智,周志伟,马巍,王大雁. 分级加卸载作用下冻结界面黏弹塑性剪切蠕变解耦分析研究. 冰川冻土. 2023(06): 1849-1858 .
    8. 孙厚超,杨平,卜迎春,石飞停. 冻黏土与结构接触界面层单剪损伤模型. 森林工程. 2022(01): 115-123 .
    9. 孙厚超,马爱群,杨平,张飞. 冻黏土界面层单调剪切数值模拟及实验对比分析. 森林工程. 2022(02): 133-139 .
    10. 赵江涛. 黄黏土地区隧道结构体与土体接触面受力分析. 岩土工程技术. 2022(04): 267-270 .
    11. 孙厚超,杨平,张忠扩,陆仁艳. 循环剪切下冻黏土与结构接触面剪切异向性研究. 森林工程. 2021(06): 82-89 .
    12. 何鹏飞,马巍,穆彦虎,董建华,黄永庭. 冻融循环对冻土–混凝土界面冻结强度影响的试验研究. 岩土工程学报. 2020(02): 299-307 . 本站查看
    13. 刘庆贺,王永涛,徐湘田,赵宇琴,李高升,张伟东. 冻结粉质黏土-桩基接触面剪切特性试验研究. 冰川冻土. 2020(02): 491-498 .
    14. 刘文博,陈璐,胡俊,曾东灵,王志鑫. 多排冻结管斜型排布温度场发展规律数值分析. 海南大学学报(自然科学版). 2020(03): 290-299 .
    15. 秦虎,贾剑青,李科技,马亢. 冻结条件下硫酸盐渍土与混凝土接触面力学特性试验研究. 三峡大学学报(自然科学版). 2020(06): 50-55 .
    16. 陈海康,梁海安,胡清波,邱思检,刘超,张龙鹏. 土-结构物接触面试验研究进展综述. 重庆建筑. 2019(09): 51-54 .
    17. 何爽,胡向东. 管幕冻结法钢管-冻土接触面剪切试验研究. 隧道建设(中英文). 2019(11): 1864-1870 .

    Other cited types(19)

Catalog

    Article views (390) PDF downloads (207) Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return