Citation: | LIU Shu-zhuo, LI Hui-zi, SHAN Yi, LI Kang, BA Ling-zhen. Energy method for analyzing dynamic pore water pressure model for tailing soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2051-2058. DOI: 10.11779/CJGE201611015 |
[1] |
谢定义. 土动力学[M]. 西安: 西安交通大学出版社, 1988. (XIE Ding-yi. Soil dynamics[M]. Xi'an: Xi'an Jiaotong University Press, 1988. (in Chinese))
|
[2] |
SEED H B, LYSMER J, MARTIN P P. Pore-water pressure changes during soil liquefaction[J]. Journal of the Geotechnical Engineering Division, 1976, 102(4): 323-346.
|
[3] |
徐志英, 沈珠江. 地震液化的有效应力二维动力分析方法[J]. 华东水利学院学报, 1981. (XU Zhi-ying, SHEN Zhu-jiang. 2D dynamic analysis of effective stresses of seismic liquefaction[J]. Journal of East China College of Hydraulic Engineering, 1981. (in Chinese))
|
[4] |
汪闻韶. 饱和砂土震动孔隙水压力的产生、扩散和消散[M].天津: 中国工业出版社, 1964. (WANG Wen-shao. The generation, diffusion and dissipation of vibration pore water pressure in sature sands[M]. Tianjin: China Industry Press, 1964. (in Chinese))
|
[5] |
DOBRY R, LADD R S, YOKEL F Y. Prediction of pore water pressure build up and liquefaction of sands during earthquakes by the cyclic strain method[M]. Maryland: National Bureau of Standarts, 1982.
|
[6] |
何广讷, 李万明. 振动能量下砂土的体变与孔隙水压力[J].地震工程与工程振动, 1987(2): 89-99. (HE Guang-ne, LI Wang-ming. Volumetric deformation and pore water pressure of sand under vibration energy[J]. Earthquake Engineering and Engineering Vibration, 1987(2): 89-99. (in Chinese))
|
[7] |
郭 莹, 刘艳华, 栾茂田, 等. 复杂应力条件下饱和松砂振动孔隙水压力增长的能量模式[J]. 岩土工程学报, 2005, 27(12): 1380-1385. (GUO Ying, LIU Yan-hua, LUAN Mao-tian, et al. Energy-based model of vibration-induced pore water pressure build-up of saturated loose sand under complex stress condition[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1380-1385. (in Chinese))
|
[8] |
YAN J, SHEN Y, HUANG G. Energy-based method for analyzing the collapse characteristics of silt subjected to changes of principal stress orientation[J]. Journal of Testing and Evaluation, 2011, 39(5): 123-131.
|
[9] |
FINN W D L, BHATIA S K. Prediction of seismic pore water pressures[J]. Stockholm, 1981, 21: 201-206.
|
[10] |
徐杨青, 郭见扬. 波浪荷载下海洋土孔隙水压力内时模型的研究[J]. 岩土力学, 1991, 22(3): 43-50. (XU Yang-qing, GUO Jian-yang. Study on the model of pore water pressure of marine Soil under wave loading[J]. Rock and Soil Mechanics, 1991, 22(3): 43-50. (in Chinese))
|
[11] |
NEMAT S. NASSER A S. A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing[J]. Canadian Geotechnical Journal, 1979, 16(4): 659-678.
|
[12] |
何广讷. 评价土体液化势的能量法[J]. 岩土工程学报, 1981(4): 11-21. (HE Guang-ne. Energy analysis procedure for evaluating soil liquefaction potential[J]. Chines Journal of Geotechnical Engineering, 1981(4): 11-21. (in Chinese))
|
[13] |
SL 237—1999土工试验规程[S]. 1999. (SL237—1999 Specification of soil test[S]. 1999. (in Chinese))
|
[14] |
陈 伟, 孔令伟, 朱建群. 一种土的阻尼比近似计算方法[J]. 岩土力学, 2007, 28(增刊1): 789-791. (CHEN Wei, KONG Ling-wei, ZHU Jian-qun. Simple method to approximately determine the damping ratio of soils[J]. Rock and Soil Mechanics, 2007, 28(S1): 789-791. (in Chinese))
|
[15] |
刘艳华. 复杂应力条件下饱和松砂振动孔隙水压力的能量模式研究[D]. 大连: 大连理工大学, 2005. (LIU Yan-hua. Energy-based model of pore water pressure build-up of saturated loose sand under complex stress condition[D]. Dalian: Dalian University of Technology, 2005. (in Chinese))
|
[16] |
ISHAC M F, HEIDEBRECHT A C. Energy dissipation and seismic liquefaction in sands[J]. Earthquake Engineering & Structural Dynamics, 1982, 10(1): 59-68.
|
[17] |
张建民, 谢定义. 饱和砂土振动孔隙水压力增长的实用算法[J]. 水利学报, 1991(8): 45-51. (ZHANG Jian-min, XIE Ding-yi. The practical algorithm for estimating shaking-induced pore-water pressure[J]. Journal of Hydraulic Engineering, 1991(8): 45-51. (in Chinese))
|
[1] | JIA Cang-qin, HUANG Qi-wu, WANG Gui-he. Numerical upper bound limit analysis based on topology optimization considering soil-structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 408-417. DOI: 10.11779/CJGE201803003 |
[2] | LIN Zhi-yong, DAI Zi-hang. Interaction factor method for piles group settlement by static load tests of single pile[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 155-162. DOI: 10.11779/CJGE201601017 |
[3] | YANG Wei-hao, DU Zi-bo, YANG Zhi-jiang, BO Dong-liang. Plastic design theory of frozen soil wall based on interaction between frozen soil wall and surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1857-1862. |
[4] | YANG Wei-hao, YANG Zhi-jiang, BO Dong-liang. Elastic-plastic design theory of frozen soil wall based on interaction between frozen wall and surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 175-180. |
[5] | LIANG Fa-yun, CHEN Hai-bing, CHEN Sheng-li. Integral equation method and parametric analysis for interaction of laterally loaded pile groups[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 848-854. |
[6] | YANG Wei-hao, YANG Zhi-jiang, HAN Tao, ZHANG Chi, BO Dong-liang. Elastic design theory of frozen soil wall based on interaction between frozen soil wall and surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 516-519. |
[7] | LI Xiaoqin, LI Wenping. Elasto-plastic model of the interaction between soil and shaft wall during deep soil compression due to losing water[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 329-332. |
[8] | LIAO Xionghua, ZHOU Jian, ZHANG Kexu, LI Xikui. Application of generalized freedom method to the analysis of soil-st ructure interaction problems[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 672-676. |
[9] | Li Wenping. Testing and theoretical studies on the interaction between soil and shaft wall during deep soil compression due to losing water[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 475-480. |
[10] | Wang Xu dong, Wei Dao duo, Zai Jin min. Numerical Analysis of Pile Groups-Soil-Pile Cap Interaction[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 30-36. |