• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIN Hai, ZHANG Ling-ling, RUAN Xiao-bo, LIU Xiao-wen. Simple-shear failure characteristics of hydrated needle-punched GCL+GM composite liner[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1660-1667. DOI: 10.11779/CJGE201609013
Citation: LIN Hai, ZHANG Ling-ling, RUAN Xiao-bo, LIU Xiao-wen. Simple-shear failure characteristics of hydrated needle-punched GCL+GM composite liner[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1660-1667. DOI: 10.11779/CJGE201609013

Simple-shear failure characteristics of hydrated needle-punched GCL+GM composite liner

More Information
  • Received Date: September 29, 2015
  • Published Date: September 24, 2016
  • Needle-punched GCL and HDPE geomembrane are widely used in landfill impermeable liner. The internal shear strength of GCL and shear strength of GCL/GM interface are the key factors influencing the slope stability of landfill composite liner. Large-scale simple-shear tests on hydrated needle-punched GCL+GM composite liner are conducted without forcing the shear failure to occur along a pre-determined plane. The development patterns of displacement of GCL/GM interface and internal displacement of GCL are obtained. The peak shear strengths of composite liner when the rough side of GM contacts respectively with the woven geotextile side and the nonwoven geotextile side of GCL are analyzed. The overall shear failure characteristics of hydrated needle-punched GCL+GM composite liner are revealed. The test results show that the large-scale simple-shear tests can correctly and reasonably simulate interactions of GCL and GM. The ultimate failure surface may change with the increase of normal stress, even there may exist a critical state in which both GCL internal surface and GCL/GM interface are the ultimate failure surfaces.
  • [1]
    钱学德, 施建勇, 刘晓东. 现代卫生填埋场的设计与施工[M]. 2版. 北京: 中国建筑工业出版社, 2011. (QIAN Xue-de, SHI Jian-yong, LIU Xiao-dong. Design and construction of modern sanitary loadfills[M]. 2rd ed. Beijing: China Architecture and Building Press, 2011. (in Chinese) )
    [2]
    KOERNER R M, SOONG T Y. Stability assessment of ten large landfill failures[C]// Advances in Transportation and Geoenvironmental Systems Using Geosynthetics, Proceedings of Sessions of GeoDenver 2000. Denver, ASCE, Geotechnical Special Publication (103), 2000: 1-38.
    [3]
    CHIU P, FOX P J. Internal and interface shear strengths of unreinforced and needle-punched geosynthetic clay liners[J]. Geosynthetics International, 2004, 11(3): 176-199.
    [4]
    FOX P J, STARK T D. State-of-the-art report: GCL shear strength and its measurement[J]. Geosynthetics International, 2004, 11(3): 141-175.
    [5]
    施建勇, 钱学德, 朱月兵. 垃圾填埋场土工合成材料的界面特性试验方法研究[J]. 岩土工程学报, 2010, 32(5): 688-692. (SHI Jian-yong, QIAN Xue-de, ZHU Yue-bing. Experimental methods for interface behaviors of geosynthetics in landfills[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 688-692. (in Chinese))
    [6]
    钱学德, 施建勇, 刘 慧, 等. 垃圾填埋场多层复合衬垫的破坏面特征[J]. 岩土工程学报, 2011, 33(6): 840-845. (QIAN Xue-de, SHI Jian-yong, LIU Hui, et al. Failure interface behavior of multilayer landfill liner system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 840-845. (in Chinese))
    [7]
    EID H T. Shear strength of geosynthetic composite systems for design of landfill liner and cover slopes[J]. Geotextiles and Geomembranes, 2011, 29(3): 335-344.
    [8]
    FOX P J, ROSS J D. Relationship between NP GCL internal and HDPE GMX/NP GCL interface shear strengths[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(8): 743-753.
    [9]
    EID H T, STARK T D. Shear behavior of an unreinforced geosynthetic clay liner[J]. Geosynthetics International, 1997, 4(6): 645-659.
    [10]
    FOX P J, ROWLAND M G, SCHEITHE J R. Internal shear strength of three geosynthetic clay liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(10): 933-944.
    [11]
    GILBERT R B, FERNANDEZ F, HORSFIELD D W. Shear strength of reinforced geosynthetic clay liner[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1996, 122(4): 259-265.
    [12]
    TRIPLETTE E J, FOX P J. Shear strength of HDPE geomembrane/geosynthetic clay liner interfaces[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(6): 543-552.
    [13]
    ZORNBERG J G, MCCARTNEY J S. SWAN J R H. Analysis of a large database of GCL internal shear strength results[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(3): 367-380.
    [14]
    MCCARTNEY J S, ZORNBERG J G, SWAN J R H. Analysis of a large database of GCL-geomembrane interface shear strength results[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(2): 209-223.
    [15]
    FOX P J, KIM R H. Effect of progressive failure on measured shear strength of geomembrane/GCL interface[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(4): 459-469.
    [16]
    林伟岸, 詹良通, 陈云敏, 等. GCL/GM界面膨润土挤出机理研究[J]. 岩土工程学报, 2011, 32(6): 832-837. (LIN Wei-an, ZHAN Liang-tong, CHEN Yun-min, et al. Mechanism of bentonite extrusion of GCL/GM interface[J]. Chinese Journal of Geotechnical Engineering, 2011, 32(6): 832-837. (in Chinese))
  • Cited by

    Periodical cited type(21)

    1. 许建文,韦超俊,刘先林. 倾斜锚固桩提升含软弱夹层边坡稳定性的应用与设计优化. 山西建筑. 2025(03): 6-12 .
    2. 胡昌钧. 土体加固对倾斜桩围护结构受力变形影响研究. 海河水利. 2024(01): 79-83 .
    3. 康剑伟. 深基坑斜直交替钢管桩复合土钉墙数值模拟分析. 路基工程. 2024(01): 118-123 .
    4. 王淞,刘永超,张建新,胡军,刘岩. 深厚软土地区倾斜桩组合支护基坑稳定性研究. 地下空间与工程学报. 2024(02): 556-565+576 .
    5. 龚建伍,张森,谢亮. 排桩倾斜对双排桩支护结构性状影响分析. 建筑技术. 2024(09): 1044-1049 .
    6. 周德泉,朱沁,王创业,周毅. 基于应变楔模型的堆载下被动斜桩受力变形分析. 湖南大学学报(自然科学版). 2024(05): 46-55 .
    7. 郑刚,王玉萍,程雪松,余地华,黄晓程,李昕昊. 软土地区基坑前排倾斜双排桩支护现场试验及工作机理. 长江科学院院报. 2024(06): 98-105+113 .
    8. 汪宇峰. 前撑式注浆钢管桩技术在基坑工程中的应用研究. 价值工程. 2024(19): 146-149 .
    9. 俞伟. 型钢倾斜桩在软土深基坑工程中的应用研究. 福建建筑. 2024(08): 63-69 .
    10. 蔡连利. 堆载对明挖隧道基坑围护结构的影响. 路基工程. 2023(01): 228-233 .
    11. 周德泉,王创业,周毅,赵亚党. 被动倾斜桩应用研究与展望. 中外公路. 2023(02): 1-10 .
    12. 干飞,郑刚,曹腾,周海祚,姜志恒,李美霖,毕靖,李亚林. 直斜交替组合钢管桩支挡结构试验研究. 岩石力学与工程学报. 2023(05): 1175-1187 .
    13. 赵平,王少航,程雪芬. 基于非对称荷载作用下的基坑变形特性研究. 安徽科技学院学报. 2023(03): 102-108 .
    14. 汤胜,金泉,王文路,窦加进,王选仓. 低海拔地区大型结构基础深基坑位移监测研究. 工业建筑. 2023(S1): 411-415+428 .
    15. 周德志. CFG桩土复合地基条件下倾斜桩支护基坑工作特性研究. 吉林水利. 2023(07): 24-30 .
    16. 李杨. 群桩中斜直交替桩布置对群桩承载力的影响研究. 地下水. 2023(05): 331-333 .
    17. 胡力文,孙洪军,万悦,贾敏慧. 基坑悬臂式倾斜桩支护性能研究进展. 辽宁工业大学学报(自然科学版). 2023(05): 332-336 .
    18. 黄礼明. 某邻近既有建筑的异形软土基坑变形控制. 福建建筑. 2023(11): 84-88 .
    19. 唐扬,张慎,侯慧珍,夏红萤. 基坑斜直交替支护桩力学性能及影响因素研究. 地下空间与工程学报. 2023(S2): 778-784+803 .
    20. 郑刚. 软土地区基坑工程变形控制方法及工程应用. 岩土工程学报. 2022(01): 1-36+201 . 本站查看
    21. 李世忠,高立飞,温鹏,任永忠. 兰州某深基坑开挖支护数值模拟分析. 山西建筑. 2022(20): 74-78 .

    Other cited types(14)

Catalog

    Article views PDF downloads Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return