• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HAN Ze-jun, LIN Gao, ZHOU Xiao-wen, LI Jian-bo. Solution of dynamic stiffness matrix for rigid strip foundations embedded in layered transversely isotropic soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1117-1124. DOI: 10.11779/CJGE201606019
Citation: HAN Ze-jun, LIN Gao, ZHOU Xiao-wen, LI Jian-bo. Solution of dynamic stiffness matrix for rigid strip foundations embedded in layered transversely isotropic soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1117-1124. DOI: 10.11779/CJGE201606019

Solution of dynamic stiffness matrix for rigid strip foundations embedded in layered transversely isotropic soil

More Information
  • Received Date: May 02, 2015
  • Published Date: June 24, 2016
  • A precise algorithm is proposed to evaluate the dynamic stiffness matrix of the rigid strip foundation embedded in layered transversely isotropic soil. The space transformation method is used to obtain the dynamic displacement response of arbitrary nodes at the surface or in the layered transversely isotropic soil. Then the dynamic flexibility matrix of the nodes in the excavation scope is established. Finally the flexible volume method is introduced to evaluate the dynamic stiffness matrix of the rigid strip foundation. The proposed method solves the dynamic flexibility coefficients of the layered soil in the frequency-wave number domain by using the precise integration method, and there is no limit to the number and thickness of layers. In addition, the computation is based on the matrix algebra with small dimension, and the computation is always stable with high efficiency. Numerical examples demonstrate the accuracy and the wide applicability of the proposed method to the layered transversely isotropic soil.
  • [1]
    LUCO J E. Linear soil-structure interaction: a review[J]. Earthquake Ground Motion and It’s Effects on Structures, ASME, 1982, 53: 41-57.
    [2]
    GAZETAS G. Analysis of machine foundation vibrations: state of the art[J]. Soil Dynamics and Earthquake Engineering, 1983, 2(1): 2-42.
    [3]
    TSYNKOV S V. Numerical solution of problem on unbounded domain: a review[J]. Applied Numerical Mathematics, 1998, 27: 465-532.
    [4]
    KAUSEL E. Early history of soil-structure interaction[J]. Soil Dynamics and Earthquake Engineering, 2010, 30: 822-832.
    [5]
    GAZATAS G. Strip foundations on a cross-anisotropic soil layer subjected to dynamic loading[J]. Géotechnique, 1981, 31(2): 161-179.
    [6]
    廖振鹏, 杨柏坡, 袁一凡. 暂态弹性波分析中人工边界的研究[J]. 地震工程与工程振动, 1982, 2(1): 1-11. (LIAO Zhen-peng, YANG Bai-po, YUAN Yi-fan. Artificial boundary in analysis of transient elastic wave propagation[J]. Earthquake Engineering and Engineering Vibration, 1982, 2(1): 1-11. (in Chinese))
    [7]
    ISRAIL ASM, AHMAD S. Dynamic vertical compliance of strip foundations in layered soils[J]. Earthquake Engineering & Structural Dynamics, 1989, 18: 933-950.
    [8]
    金 峰, 张楚汉, 王光纶. 结构地基相互作用的FE-BE-IBE耦合模型[J]. 清华大学学报, 1993, 33(2): 17-24. (JIN Feng, ZHANG Chu-han, WANG Quang-lun. A coupling FE-BE-IBE model for structure-foundation interaction[J]. Journal of Tsinghua University, 1993, 33(2): 17-24. (in Chinese))
    [9]
    林 皋, 韩泽军, 李伟东, 等. 多层地基条带基础动力刚度矩阵的精细积分算法[J]. 力学学报, 2012(3): 557-567. (LIN Gao, HAN Ze-jun, LI Wei-dong, et al. A precise integration approach for the dynamic-stiffness matrix of strip footings on a layered medium[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012(3): 557-567. (in Chinese))
    [10]
    LIN G, HAN Z J, ZHONG H, et al. A precise integration approach for dynamic impedance of rigid strip footing on arbitrary anisotropic layered half-space[J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 96-108.
    [11]
    艾智勇, 张逸帆. 层状横观各向同性地基与刚性条形基础共同作用分析[J]. 岩土工程学报, 2014, 36(4): 752-756. (AI Zhi-yong, ZHANG Yi-fan. Interactive analysis of a rigid strip footing on transversely isotropic layered soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 752-756. (in Chinese))
    [12]
    WANG Y, RAJAPAKSE R K N D. Dynamic of rigid strip foundations embedded in orthotropic elastic soils[J]. Earthquake Engineering and Structural Dynamics, 1991, 20: 927-947.
    [13]
    KAUSEL E, ROESSET J M, WAAS G. Dynamic analysis of footings on layered media[J]. Journal of Engineering Mechanics, 1975, 101: 679-693.
    [14]
    PARK J, KAUSEL E. Numerical dispersion in the thin-layer method[J]. Computers & Structures 2004, 82: 607-625.
    [15]
    SPYRAKOS C C, BESKOS D E. Dynamic response of flexible strip-foundations by boundary and finite elements[J]. Soil Dynamics and Earthquake Engineering, 1986, 5(2): 84-96.
    [16]
    SPYRAKOS C C, CHAOJIN X. Dynamic analysis of flexible massive strip-foundations embedded in layered soils by hybrid BEM-FEM[J]. Computers and Structures, 2004, 82: 2541-2550.
    [17]
    韩泽军, 林 皋, 钟 红. 改进的比例边界有限元法求解层状地基动力刚度矩阵[J]. 水电能源科学, 2012(7): 100-104. (HAN Ze-jun, LIN Gao, ZHONG Hong. Modified scaled boundary finite element method solution for dynamic stiffness matrix of laminar foundation[J]. Water Resources and Power, 2012(7): 100-104. (in Chinese))
    [18]
    GAO Q, ZHONG W X, HOWSON W P. A precise method for solving wave propagation problems in layered anisotropic media[J]. Wave Motion; 2004, 40: 191-207.
    [19]
    TABATABAIE-RAISSI M. The flexible volume method for dynamic soil structure interaction analysis[D]. Berkeley: University of California, 1982.
  • Cited by

    Periodical cited type(4)

    1. 王宇,茆苏徽. 岩石蠕变模型的二次开发. 价值工程. 2025(01): 65-67 .
    2. 刘楚佳,刘晓辉,张旭,王悠. 改进的非定常Maxwell岩石蠕变模型及参数识别. 中国农村水利水电. 2025(01): 221-226 .
    3. 胡亚元,丁盼. 基于等效时间的双屈服面三维流变模型. 岩土工程学报. 2020(01): 53-62 . 本站查看
    4. 张亮亮,王晓健. 岩石黏弹塑性损伤蠕变模型研究. 岩土工程学报. 2020(06): 1085-1092 . 本站查看

    Other cited types(1)

Catalog

    Article views (486) PDF downloads (282) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return