• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Hu, ZHANG Jian-ming, ZHANG Zhi-long, CHAI Ming-tang. Measurement of hydraulic conductivity of Qinghai-Tibet Plateau silty clay under subfreezing temperatures[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1030-1035. DOI: 10.11779/CJGE201606008
Citation: ZHANG Hu, ZHANG Jian-ming, ZHANG Zhi-long, CHAI Ming-tang. Measurement of hydraulic conductivity of Qinghai-Tibet Plateau silty clay under subfreezing temperatures[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1030-1035. DOI: 10.11779/CJGE201606008

Measurement of hydraulic conductivity of Qinghai-Tibet Plateau silty clay under subfreezing temperatures

More Information
  • Received Date: May 18, 2015
  • Published Date: June 24, 2016
  • In order to cognize the permeable property of the frozen silty clay spreading widely in permafrost regions on the Qinghai-Tibet Plateau, a series of laboratory tests are conducted to measure the hydraulic conductivities of the frozen silty clays with moisture content of 50% at temperatures from -0.6 to 0.1oC. The results show that under the warm negative temperatures, the hydraulic conductivities of frozen silty clay are in the range of 8.22×10-11~7.19×10-9 cm/s. In addition, the hydraulic conductivity has a power function relationship with the soil temperature, and it grows more rapidly as the temperature gets closer to 0 oC. And the hydraulic conductivity expresses a rapid increase tendency with the increasing volumetric content of unfrozen water. The existence and measurability of the permeability in frozen soils indicate that consolidation may occur in warm frozen soils under external loads.
  • [1]
    马田田, 韦昌富, 周家作, 等. 土体的冻结特征曲线和持水特性[J]. 岩土工程学报. 2015, 37(增刊1): 172-177. (MA Tian-tian, WEI Chang-fu, ZHOU Jia-zuo, et al. Freezing characteristic curves and water retention characteristics of soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 172-177. (in Chinese))
    [2]
    徐斆祖, OLIPHANT J L , TICE A R. 土水势、未冻水含量和温度[J]. 冰川冻土, 1985, 7(1): 1-11. (XU Xiao-zu, OLIPHANT J L, TICE A R. Soil-water potential and unfrozen water content and temperature[J]. Journal of Glaciology and Geocryology, 1985, 7(1): 1-11. (in Chinese))
    [3]
    ANDERSON D M, TICE A R. Predicting unfrozen water contents in frozen soils from surface area measurements[C]// Proceedings of Frost Action in Soils. Washinton D C: National Academy of Sciences, 1972: 12-18.
    [4]
    TSYTOVICH H A. Mechanics of frozen soil[M]. Washington D C: Scripta Book Company, 1985: 204-221.
    [5]
    MILLER R D, LOCH J P G, BREESLER E. Transport of water and heat in a frozen permeameter[J]. Soil Science Society of America Journal, 1975, 39(6): 1029-1036.
    [6]
    BURT T P, WILLIAMS P J. Hydraulic conductivity in frozen soils[J]. Earth Surface Processes, 1976(1): 349-360.
    [7]
    HORIGUCHI K, MILLER R D. Experimental studies with frozen soil in an “ice sandwich” permeameter[J]. Cold Regions Science and Technology, 1980, 3(2/3): 177-183.
    [8]
    SEYFRIED M S, MURDOCK M D. Use of air permeability to estimate infiltrability of frozen soil[J]. Journal of Hydrology, 1997, 202: 95-107.
    [9]
    WILLIAMS P J, BURT T P. Measurement of hydraulic conductivity of frozen soils[J]. Canadian Geotechanical Journal, 1974, 11: 647-650.
    [10]
    AGUIRRE-PUENTE J, GRUSON J. Measurement of permeabilities of frozen soils[C]// Proceedings of 4th International Conference on Permafrost. Fairbanks, 1983: 5-9.
    [11]
    ANDERSLAND O B, WIGGERT D C, DAVIES S H. Hydraulic conductivity of frozen granular soils[J]. Journal of Environmental Engineering, 1996, 122(3): 212-216.
    [12]
    WIGGERT D C, ANDERSLAND O B, DAVIES S H. Movement of liquid contaminants in partially saturated frozen granular soils[J]. Cold Regions Science and Technology, 1997, 25(2): 111-117.
    [13]
    MCCAULEY C A, WHITE D M, LILLY M R, et al. A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils[J]. Cold Regions Science and Technology, 2002, 34(2): 117-125.
    [14]
    PERFECT E, WILLIAMS P J. Thermally induced water migration in frozen soils[J]. Cold Regions Science and Technology, 1980, 3(2): 101-109.
    [15]
    OLIPHANT J L, TICE A R, NAKANO Y. Water migration due to a temperature gradient in frozen soil[C]// Proceedings of 4th International Conference on Permafrost, Fairbanks, Alaska. Washington D C: National Academy Press, 1983: 951-956.
    [16]
    WATANABE K, WAKE T. Hydraulic conductivity in frozen unsaturated soil[C]// Proceedings of 9th International Conference on Permafrost. Fairbanks: University of Alaska, 2008.
    [17]
    NIXON J F. Discrete ice lens theory for frost heave in soils[J]. Canadian Geotechanical Journal, 1991(28): 843-859.
    [18]
    GB/T 50123—1999 土工试验方法标准[S]. 1991. (GB/T 50123—1999 Standard for soil test method[S]. 1991. (in Chinese))
    [19]
    徐斆祖, 王家澄, 张立新. 冻土物理学[M]. 北京:科学出版社, 2010: 59-62. (XU Xiao-zu, WANG Jia-cheng, ZHANG Li-xin. Physics of frozen soil[M]. Beijing: Science Press, 2010: 59-62. (in Chinese))
    [20]
    苏 凯. 青藏直流±400 kV输电线路多年冻土区塔基稳定性评价[D]. 北京: 中国科学院大学, 2013: 28-30. (SU Kai. Stability evaluation for the foundation of DC ±400 kV transmission line in permafrost regions on the Qinghai-Tibetan Plateau[D]. Beijing: University of Chinese Academy of Sciences, 2013: 28-30. (in Chinese))
    [21]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2006: 197-199. (LI Guang-xin. Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2006: 197-199. (in Chinese))

Catalog

    Article views (668) PDF downloads (444) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return