• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Man, XIE Mo-wen, WANG Li-wei. SPH simulations of post-failure flow of landslides using elastic-plastic soil constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 58-67. DOI: 10.11779/CJGE201601005
Citation: HU Man, XIE Mo-wen, WANG Li-wei. SPH simulations of post-failure flow of landslides using elastic-plastic soil constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 58-67. DOI: 10.11779/CJGE201601005

SPH simulations of post-failure flow of landslides using elastic-plastic soil constitutive model

More Information
  • Received Date: December 02, 2014
  • Published Date: January 19, 2016
  • Modeling of post-failure flow of landslides is one of the important approaches that can be used to simulate landslide flow development and predict the landslide hazard zone. A Smoothed particle hydrodynamics (SPH) model based on the constitution of elastic-plastic constitutive mechanics for soil is developed for simulating the behavior of a class of geo-materials. The SPH soil model considers the plastic behavior of the materials, and hence it is very important for more accurate and realistic simulations of geo-materials of soil type. The implemented material laws in the SPH soil code include classical elastic-plasticity with a linear elastic part, and different applicable yield surfaces with non-associated flow rules. In order to apply the SPH method to actual landslide modeling, the geographic information system (GIS) is utilized to generate site-specific models. Thus a C# code is developed to generate the particles of a given landslide site, which produces realistic particle mass and actual complicated boundaries for the SPH soil model. With GIS enabled, complex topography and irregular boundary can be accurately and easily generated. To improve the accuracy of such a complicated landslide simulation, a modified approach is proposed to implement the complex topography representation of landslide mass and the effective treatments of the irregular and complicated boundaries generated from the GIS. The SPH soil code is applied to the well-known Daguangbao landslide triggered by Wenchuan Earthquake in 2008. The topographies after failure are compared with those obtained from field collected data, and good agreement is found.
  • [1]
    DUNCAN J M. State of the art: limit equilibrium and finite element analysis of slopes[J]. J Geotech Eng, 1996, 122: 577-596.
    [2]
    HAMMOURI N A, MALKAWI A I H, YAMIN M M A. Stability analysis of slopes using the finite element method and limiting equilibrium approach[J]. Bull EngGeol Environ, 2008, 67: 471-478.
    [3]
    SCAVIA C. A method for the study of crack propagation in rock structures[J]. Géotechnique, 1995, 45(3): 447-463.
    [4]
    EBERHARDT E, STEAD D, COGGAN J S. Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(1): 69-87.
    [5]
    MISHRA B K, RAJAMANI R K. The discrete element method for the simulation of ball mills[J]. Applied Mathematical Modelling, 1992, 16(11): 598-604.
    [6]
    SHI G H, GOODMAN R E. Discontinuous deformation analysis[C]// 25th US Symp on Rock Mech. Evanston, 1984.
    [7]
    BELYTSCHKO T, LU Y Y, GU L. Element‐free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229-256.
    [8]
    CHOPARD B, DROZ M. Cellular automata modeling of physical systems[J]. Cambridge: Cambridge University Press, 1998.
    [9]
    LIU G R, LIU M B. Smoothed particle hydrodynamics: a meshfree particle method[M]. World Scientific, 2003.
    [10]
    DOUGALL S, HUNGR O. A model for the analysis of rapid landslide motion across three-dimensional terrain[J]. Canadian Geotechnical Journal, 2004, 41(6): 1084-1097.
    [11]
    PASTOR M, HADDAD B, SORBINO G, et al. A depth‐integrated, coupled SPH model for flow-like landslides and related phenomena[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(2): 143-172.
    [12]
    HADDAD B, PASTOR M, PALACIOS D, et al. A SPH depth integrated model for Popocatépetl 2001 lahar (Mexico): Sensitivity analysis and runout simulation[J]. Engineering Geology, 2010, 114(3): 312-329.
    [13]
    HUANG Y, ZHANG W, XU Q, et al. Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics[J]. Landslides, 2012, 9(2): 275-283.
    [14]
    SAKAI H, MAEDA K. Seepage failure and erosion mechanism of granular material with evolution of air bubbles using SPH[C]// Powders and Grains 2009: Proceedings of the 6th International Conference on Micromechanics of Granular Media. Colorado, 2009: 1001-1004.
    [15]
    BUI H H, FUKAGAWA R, SAKO K, et al. Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(12): 1537-1570.
    [16]
    CHEN W F, MIZUNO E. Nonlinear analysis in soil mechanics[M]// Developments in Geotechnical Engineering, Amsterdam: Elsevier, 1990: 672.
    [17]
    MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110(2): 399-406.
    [18]
    LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain lagrangian hydrodynamics: a three- dimensional SPH code for dynamic material response[J]. Journal of Computational Physics, 1993, 109(1): 67-75.
    [19]
    MORRIS J P, FOX P J, ZHU Y. Modeling low reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997, 136(1): 214-226.
    [20]
    LIU M B, SHAO J R, CHANG J. On the treatment of solid boundary in smoothed particle hydrodynamics[J]. Science China Technological Sciences, 2012, 55(1): 244-254.
    [21]
    MONAGHAN J J. Smoothed particle hydrodynamics[J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543-574.
    [22]
    LATTANZIO J C, MONAGHAN J J, PONGRACIC H, et al. Controlling penetration[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(2): 591-598.
    [23]
    MONAGHAN J J. On the problem of penetration in particle methods[J]. Journal of Computational physics, 1989, 82(1): 1-15.
    [24]
    HUANG R, PEI X, FAN X, et al. The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China[J]. Landslides. 2012, 9(1): 131-142.
    [25]
    ZHANG Y, CHEN G, ZHENG L, et al. Numerical analysis of the largest landslide induced by the Wenchuan Earthquake, May 12, 2008 Using DDA[C]// Proceedings of the International Symposium on Earthquake-Induced Landslides, Kiryu, Japan, 2012. 617-626.
  • Related Articles

    [1]LIU Yadong, LIU Xian, LI Xueyou, YANG Zhiyong. Adaptive reliability analysis of spatially variable soil slopes using strength reduction sampling and Gaussian process regression[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 978-987. DOI: 10.11779/CJGE20230065
    [2]Study on the proportional coefficient m of horizontal subgrade reaction for Shanghai clayey soils and engineering verification[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240012
    [3]XU Si-fa, ZHOU Qi-hui, ZHENG Wen-hao, ZHU Yong-qiang, WANG Zhe. Influences of construction of foundation pits on deformation of adjacent operating tunnels in whole process based on monitoring data[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 804-812. DOI: 10.11779/CJGE202105003
    [4]ZENG Hao, TANG Chao-sheng, LIU Chang-Li, LIN Luan, XU Jin-Jian, WANG Dong-wei, SHI Bin. Measurement and analysis of shrinkage stress of expansive soils during drying process[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 717-725. DOI: 10.11779/CJGE201904015
    [5]WANG Chun-Bo, DING Wen-qi, TIAN Jiao, TANG Zhi-cheng. Coefficient of horizontal sub-grade reaction considering rheological properties of soft soils in Wuxi region[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 607-611.
    [6]SU Guo-shao, XIAO Yi-long. Gaussian process method for slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 916.
    [7]CHENG Weishuai, LIU Dan. Impact analysis of reservoir retirement:macro-processes and final effects[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1765-1770.
    [8]YING Hongwei, GUO Yue. 3D analysis on a deep beam-slab braced foundation pit considering effect of construction process[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1670-1675.
    [9]YANG Tianhong, TAN Chunan, ZHU Wancheng, FENG Qiyan. Coupling analysis of seepage and stresses in rock failure process[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 489-493.
    [10]Ran Qiquan, Gu Xiaoyun. Coupling analysis of multiphase flow and stress for oil reservoir[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 69-73.
  • Cited by

    Periodical cited type(8)

    1. 伊正男,张树光,漆文浩,范明卓,孙晔. 酸性溶液侵蚀红层软岩流固耦合蠕变特性分析. 矿业研究与开发. 2025(02): 171-183 .
    2. 梁艳玲,霍润科,宋战平,穆彦虎,秋添,宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型. 材料导报. 2024(08): 163-169 .
    3. 孟津竹,陈四利,王军祥,张靖宇. 碳酸盐岩溶蚀效应及力学特性. 沈阳工业大学学报. 2024(03): 353-360 .
    4. CHEN Bowen,LI Qi,TAN Yongsheng,Ishrat Hameed ALVI. Dissolution and Deformation Characteristics of Limestones Containing Different Calcite and Dolomite Content Induced by CO_2-Water-Rock Interaction. Acta Geologica Sinica(English Edition). 2023(03): 956-971 .
    5. 张研,王峻峰,付闵洁,叶玉龙. 酸性干湿循环灰岩单轴压缩细观劣化三维离散元分析. 金属矿山. 2023(12): 42-49 .
    6. 田洪义,王华,司景钊. 酸性溶液对花岗岩力学特性及微观结构的影响. 隧道建设(中英文). 2022(01): 57-65 .
    7. 陈传平. 灰岩三轴循环力学特性及能量演化特征试验研究. 石家庄铁道大学学报(自然科学版). 2022(02): 67-73 .
    8. 胡维. 酸性环境下灰岩水岩作用阶段判定及依据. 山西建筑. 2022(23): 72-75 .

    Other cited types(19)

Catalog

    Article views (651) PDF downloads (799) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return