• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Qian, WANG Ping, WANG Jun, ZHONG Xiu-mei, MA Hai-ping, FENG Min-jie. Effect of microstructure properties on of dynamic residual deformation behavior of saturated loess[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 143-147. DOI: 10.11779/CJGE2015S2028
Citation: WANG Qian, WANG Ping, WANG Jun, ZHONG Xiu-mei, MA Hai-ping, FENG Min-jie. Effect of microstructure properties on of dynamic residual deformation behavior of saturated loess[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 143-147. DOI: 10.11779/CJGE2015S2028

Effect of microstructure properties on of dynamic residual deformation behavior of saturated loess

More Information
  • Received Date: March 25, 2015
  • Published Date: July 24, 2015
  • Based on the SEM tests and dynamic triaxial tests on the loess with different microstructures from the Loess Plateau region and the liquefaction tests on undisturbed and disturbed Lanzhou loess with the same property state, the influence rules of structural properties of saturated loess on liquefaction strength are obtained. The relationship between microstructural types and the dynamic residual deformation behavior of saturated loess are qualitatively and quantitatively analyzed. Moreover, the development mechanisms of the dynamic residual deformation of the loess with different microstructures are obtained through analysis of the dynamic stress-dynamic residual strain of the loess in different regions. The results show that the liquefaction strength of saturated loess relates to the micro structure. The liquefaction strength of the soil decreases during the disturbed process because the particle reorganization and the cementation are weakened. The dynamic residual deformation of the saturated loess exponentially increases with the increase of vibration times, and the fitting parameters are mainly controlled by the density and plasticity index of the loess. The increase of dynamic residual deformation closely relates to the microstructural properties, the higher the structural strength, the slower growth the dynamic residual deformation of the loess. The development mechanisms of dynamic residual deformation are different for the loess with different microstructural properties. The dynamic residual deformation of weak cementation loess can be divided into visco-elastoplastic and plastic stages. However, the dynamic residual deformation of stronger cemented loess can be divided into visco-elastoplastic, visco-plasticity and plastic stages successively during liquefaction.
  • [1]
    刘汉龙. 土动力学与土工抗震研究进展综述[J]. 土木工程学报, 2012, 45(4): 1-17. (LIU Han-long. A review of recent advances in soil dynamics and geotechnical earthquake engineering[J]. China Civil Engineering Journal, 2012, 45(4): 1-17. ( in Chinese))
    [2]
    胡再强, 沈珠江, 谢定义.非饱和黄土的结构性研究[J]. 岩石力学与工程学报, 2000, 19(6): 775-779. (HU Zai-qiang, SHEN Zhu-jiang, XIE Ding-yi. Research on structure behavior of unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(6): 775-779. (in Chinese))
    [3]
    PURI V K. Liquefaction behavior and dynamic properties of loessial (Silty) soils[D]. Missouri: University of Missouri-Rolla, 1984.
    [4]
    WANG Lan-min, HWANG H, LIN Y, et, al. Comparison of liquefaction of loess in China, USA and Russia[C]// Proc 4th International Conference on Recent Progress on Earthquake Engineering and Soil Dynamics. San Diego USA, 2001.
    [5]
    HWANG H, WANG Lan-min, YUAN Zhong-xia. Comparison of liquefaction potential of loess in Lanzhou, China, and Memphis, USA[J]. Soil Dynamics and Earthquake Engineering, 2000, 20: 389-395.
    [6]
    吴敏哲, 张 柯, 胡卫兵, 等. 地铁行车荷载作用下饱和黄土的累积塑性应变[J]. 西安建筑科技大学学报 (自然科学版), 2011, 43(3): 316-322. (WU Min-zhe, ZHANG Ke, HU Wei-bing, et al. Cumulative plastic strain of saturated loess due to metro traffic loading[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2011, 43(3): 316-322. (in Chinese))
    [7]
    胡 伟, 韩建刚. 结构性饱和黄土动力特性试验研究[J]. 工程地质学报, 2009, 17(5): 648-655. (HU Wei, HAN Jian-gang. Laboratory testing study of dynamic properties of saturated loess for effect of its internal structure[J]. Journal of Engineering Geology, 2009, 17(5): 648-655. (in Chinese))
    [8]
    佘跃心, 刘汉龙, 高玉峰. 饱和黄土孔压增长模式与液化机理的试验研究[J]. 岩土力学, 2002, 23(4): 395-399. (SHE Yue-xin, LIU Han-long, GAO Yu-feng. Study on liquefaction mechanism and pore water pressure mode of saturated original loess[J]. Rock and Soil Mechanics, 2002, 23(4): 395-399. (in Chinese))
    [9]
    孙海妹, 王兰民, 王 平, 等. 饱和兰州黄土液化过程中孔压和应变发展的试验研究[J]. 岩土力学, 2010, 21(11): 3464-3468. (SUN Hai-mei, WANG Lan-min, WANG Ping, et al. Experimental study of development of strain and pore water pressure during liquefaction of saturated Lanzhou loess[J]. Rock and Soil Mechanics, 2010, 21(11): 3464-3468. (in Chinese))
    [10]
    王 峻, 王兰民, 王 平, 等. 不同地区饱和黄土液化特性研究[J]. 水文地质工程地质, 2011, 38(5): 54-56. (WANG Jun, WANG Lan-min, WANG Ping, et al. Study on liquefaction characters of saturated loess in different regions[J]. Hydrogeology & Engineering Geology, 2011, 38(5): 54-56. (in Chinese))
    [11]
    王 谦, 王兰民, 王 峻, 等. 基于密度控制理论的饱和黄土地基抗液化处理指标研究[J]. 岩土工程学报, 2013, 35(S2): 844-847. (WANG Qian, WANG Lan-min, WANG Jun, et al. Indices of anti-liquefaction treatment of saturated compacted loess foundation based on theory of density control[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 844-847. (in Chinese))
    [12]
    王永炎, 林在贯. 中国黄土的结构特征及物理力学性质[M]. 北京: 科学出版社, 1990. (WANG Yong-yan, LIN Zai-guan. The China loess structure features and its physical and mechanical properties[M]. Beijing: Science Press, 1990. (in Chinese))
    [13]
    邓 津, 王兰民, 张振中, 等. 我国黄土的微结构类型与震陷区域划分[J]. 地震工程学报, 2013, 35(3): 664-670. (DENG Jin, WANG Lan-min, ZHANG Zheng-zhong, et al. The China loess microstructure types and its seismic subsidence zones divided[J]. China Earthquake Engineering Journal, 2013, 35(3): 664-670. (in Chinese))
  • Related Articles

    [1]HUANG Juehao, QIU Yuefeng, WU Jiaming, LI Yinan, CHEN Jian, FU Xiaodong. Experimental study on coupling effects of cyclic confining pressure and intermittent cyclic loading on deformation behavior of saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 48-52. DOI: 10.11779/CJGE2024S10009
    [2]Effect of initial static shear stress and cyclic loading direction on the liquefaction behavior of saturated dense sand[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240591
    [3]HUANG Juehao, WANG Hongchao, CHEN Jian, FU Xiaodong, YAN Xiaoling, MA Chao. Effects of intermittent cyclic loading with cyclic confining pressure on deformation behaviors of saturated clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 67-70. DOI: 10.11779/CJGE2023S10038
    [4]SUN Anyuan, YANG Gang, REN Yubin, KONG Gangqiang, YANG Qing. Undrained heating effects on monotonic shear behaviors and critical cyclic stress ratios of deep-sea sediment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2110-2118. DOI: 10.11779/CJGE20220892
    [5]HUANG Jue-hao, WANG Ying-wu, CHEN Jian, LIU Fu-sheng, HOU Feng, FU Xiao-dong, MA Chao. Experimental study on deformation behaviors of overconsolidated clay under cyclic confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 245-248. DOI: 10.11779/CJGE2021S2058
    [6]HUANG Jue-hao, CHEN Jian, KE Wen-hui, ZHONG Yu, QIU Yue-feng. Coupling effects of bidirectional cyclic loading and loading frequency on pore water pressure of saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 71-74. DOI: 10.11779/CJGE2017S2018
    [7]WANG Yuan-zhan, LEI Ji-chao, LI Qing-mei, HU Shen-rong. Post-cyclic strength degradation behavior of soft clay under anisotropic consolidation and numerical simulation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1557-1564. DOI: 10.11779/CJGE201709002
    [8]WANG Jun, WANG Pan, LIU Fei-yu, HU Xiu-qing, CAI Yuan-qiang. Cyclic and post-cyclic direct shear behaviors of geogrid-sand interface with different soil densities[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 342-349. DOI: 10.11779/CJGE201602019
    [9]ZHENG Gang, HUO Hai-feng, LEI Hua-yang. Undrained strength characteristics of saturated undisturbed and remolded silty clay after cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 400-408.
    [10]Stress and deformation behaviors of rockfill under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8).
  • Cited by

    Periodical cited type(7)

    1. 郝鹏 ,杨浩 ,冯少军 ,王博 . 高置信水平结构逆可靠度分析与优化方法研究进展. 力学学报. 2024(02): 310-326 .
    2. 王钰轲,邵琳岚,万愉快,余翔,张蓓,钟燕辉. 基于K-L展开法考虑土体参数空间变异性的土石坝坝坡可靠度分析. 水利学报. 2024(12): 1417-1427 .
    3. 孙良鑫. 基覆面形式对堆积体边坡失效风险影响分析. 金属矿山. 2023(06): 184-191 .
    4. 韩非,胡超. 基于滑移线场理论的概率边坡设计. 科学技术与工程. 2023(20): 8771-8779 .
    5. 曹子君,周强,李典庆. 边坡稳定确定性设计与可靠度设计的安全判据等价性充分条件. 岩土工程学报. 2023(08): 1703-1712 . 本站查看
    6. 吴兴征,刘赫. 土工构筑物的逆几何可靠性分析算法. 土木与环境工程学报(中英文). 2023(05): 106-115 .
    7. 王涛,马骏,周国庆,许大晴,季雨坤. 冻土地层三维空间变异性表征及冻结帷幕温度特征值演化过程研究. 岩石力学与工程学报. 2022(10): 2094-2108 .

    Other cited types(9)

Catalog

    Article views (267) PDF downloads (331) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return