• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HOU Juan, ZHANG Meng-xi, HAN Xiao, LI Rong. Mechanism of a high-strength geocell using FEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 26-30. DOI: 10.11779/CJGE2015S1006
Citation: HOU Juan, ZHANG Meng-xi, HAN Xiao, LI Rong. Mechanism of a high-strength geocell using FEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 26-30. DOI: 10.11779/CJGE2015S1006

Mechanism of a high-strength geocell using FEM

More Information
  • Received Date: March 25, 2015
  • Published Date: July 24, 2015
  • The comprehensive results from FEM on square footings supported on high-strength geocell and unreinforced sand beds are introduced. The stress distribution, displacement distribution and friction on the surface of a high-strength geocell-reinforced foundation are studied. The results show that the high-strength geocell reinforcement system behaves much stiffer and carries greater loading than the equivalent unreinforced system does. Beside the friction of geocell, the height of geocell keeps the sand from being displaced under the applied load and redistributeds the surcharge over a wider area, thereby it increases the shear strength of the composite system, which in turn substantially improves the bearing capacity of a sand bed.
  • [1]
    包承纲. 土工合成材料应用原理与工程实践[M]. 北京:中国水利水电出版社, 2008. (BAO Cheng-gang. The principle and application of geosynthetics in engineering[M]. Beijing: China WaterPower Press, 2008. (in Chinese))
    [2]
    JENNERC G, BASSET RH, BUSHDI. The use of slip line fields to assess the improvement in bearing capacity of soft ground given by cellular foundation mattress installed at the base of an embankment[C]// Proceedings of International Geotechnical Symposium on the Oryand Practice of Earth Reinforcement. Rotterdam: Balkema, 1988: 209-214.
    [3]
    郑 刚, 龚晓南, 谢永利, 等. 地基处理技术发展综述[J]. 土木工程学报, 2012, 45(2): 127-146. (ZHENG Gang, GONG Xiao-nan, XIE Yong-li, et al. State of the art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45(2): 127-146. (in Chinese))
    [4]
    DASH SK, KRISHNASWAMY NR, RAJAGOPAL K. Bearing capacity of strip footings supported ongeocell-reinforced sand[J]. Geotextiles and Geomembranes, 2001, 19(4): 235-256.
    [5]
    MADHAVI L G, DASH S K, RAJAGOPAL K.Numerical simulation of the behavior of geocell reinforced sand in foundations[J]. International Journal of Geomechanics, 2009, 9(4): 143-152.
    [6]
    DASH S K. Effect of geocelltype on load-carrying mechanisms of geocell-reinforced sand foundations[J]. International Journal of Geomechanics, 2012, 12(5): 537-548.
    [7]
    SIREESH S, SITHARAM T G, DASH S K. Bearing capacity of circular footing on geocell-sand mattress overlying clay bed with void[J]. Geotextiles and Geomembranes, 2008, 27(1): 89-98.
    [8]
    TAFRESHI MOGHADDAS S N, DAWSONA R. Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement[J]. Geotextiles and Geomembranes, 2010, 28(1): 72-84.
    [9]
    边学成, 宋 广, 陈云敏. Pasternak地基中土工格室加筋体的受力变形分析[J]. 工程力学, 2012, 29(5): 147-155. (BIAN Xue-cheng, SONG Guang, CHEN Yun-min. Deformation behaviors of geocell reinforcement in Pasternak ground engineering mechanics[J]. Engineering Mechanics, 2012, 29(5): 147-155. (in Chinese))
    [10]
    赵明华, 陈炳初, 尹平保, 等. 土工格室碎石基层+刚性路面承载特性模型试验研究[J]. 岩土工程学报, 2012, 34(4): 577-581. (ZHAO Ming-hua, CHEN Bing-chu, YIN Ping-bao, et al. Model tests on bearing capacity characteristics of geocell gravelbase and rigid pavement[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 577-581. (in Chinese))
    [11]
    李广信. 关于土工合成材料加筋设计的若干问题[J]. 岩土工程学报, 2013, 35(4): 605-610. (LI Guang-xin. Some problems in design of geosynthetic-reinforced soil structures[J]. Chinese Journal of Geotechnical Engineering,2013, 35(4): 605-610. (in Chinese))
    [12]
    郭庆淀, 顾跃强, 张立杰. 高强土工格室在高速公路路基施工中的应用[J]. 山西建筑, 2009, 35(4): 298-299. (GUO Qing-dian, GU Yue-qiang, ZHANG Li-jie. The high intensity geogrid application in express highway foundation construction[J]. Shanxi Architecture, 2009, 35(4): 298-299.)
    [13]
    陈建峰, 汪嘉嘉, 徐 超. 加筋土挡墙动力特性研究进展[J]. 灾害学, 2011, 26(3): 52-55. (CHEN Jian-feng, WANG Jia-jia, XU Chao. Research status of dynamic properties of reinforced soil retaining walls[J]. Journal of Catastrophology, 2011, 26(3): 52-55. (in Chinese))
    [14]
    韩 晓, 张孟喜, 李嘉洋, 等. 高强土工格室加筋砂土地基模型试验研究[J]. 长江科学院院报, 2014, 31(03): 27-33. (HAN Xiao, ZHANG Men-xi, LI Jia-yang, et al. Model test of sand foundation reinforced with high-strength geocell[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(03): 27-33. (in Chinese))
  • Related Articles

    [1]WEI Xing, CHENG Shitao, XIE Xiangyan, CHEN Rui. SPH-FEM simulation of landslide induced by earthquake considering velocity weakening effect of frictional strength[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1753-1761. DOI: 10.11779/CJGE20230463
    [2]LIANG Jian-wen, ZHU Jun. FEM-IBEM coupling method for nonlinear seismic response analysis of underground structures in water-saturated soft soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 1977-1987. DOI: 10.11779/CJGE201811003
    [3]LIU Zhong-xian, WANG Dong. Effect of different wave velocity models on seismic response of alluvial valley based on FEM-IBIEM[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1289-1301. DOI: 10.11779/CJGE201407013
    [4]ZHANG Zhi-guo, HUANG Mao-song, WANG Wei-dong. DCBEM-FEM coupling method for response analysis of adjacent pipelines due to tunneling[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1554-1561.
    [5]CHEN Pingshan, FANG Yingguang, MO Haihong, ZHANG Gongxin, DONG Zhiliang. Analysis of 3D FEM for soft foundation improved by vacuum preloading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 564-570.
    [6]QIAN Deling. Study on loading transfer law and FEM simulation of squeezed branch pile[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 371-375.
    [7]LIAN Zhenying, HAN Guocheng, KONG Xianjing. Stability analysis of excavation by strength reduction FEM[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 407-411.
    [8]Jiang Shu ping. Coupling  Algorithm  of  Extended  Kalman  Filter  FEM  and  Its  Application  in  Tunnel  Engineering[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 14-22.
    [9]Yao Yaowu, Shen Chao. Nonlinear Stochastic FEM and its Application for Reliability Analysis[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(2): 37-46.
    [10]Xie Ning, Shun Jun. Nonlinearly Rheological FEM of Soil and Its Application[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(4): 95-99.
  • Cited by

    Periodical cited type(12)

    1. 李立辰,刘卓,刘浩,吴文兵,罗仑博,蒋国盛,梅国雄. 考虑土塞效应的开口管桩沉桩与承载全过程离散元分析. 岩土工程学报. 2024(07): 1471-1480 . 本站查看
    2. 倪志. 基于静力触探测试的深基坑工程土体设计参数应用研究. 建筑技术开发. 2023(03): 152-154 .
    3. 陈磊. 基于静力触探测试的深基坑工程土体设计参数应用研究. 广东建材. 2023(04): 72-75 .
    4. 郭丽丽. 静力触探技术在中华长城博物馆土地基承载力评估中的应用. 砖瓦. 2022(06): 65-67+70 .
    5. 栾尧正,杨泽讯,王佳俊. 基于静力触探试验的数值模拟研究. 工程机械与维修. 2022(05): 218-220 .
    6. 赵腾跃,梁胜,候捷,张晨,卞海丁,姚伟伟. 基坑开挖施工时邻近桩基侧向变形分析. 施工技术(中英文). 2022(19): 40-45 .
    7. 王磊,俞峰,潘静杰. 敞口管型桩压入对既有受荷桩基承载性状影响. 浙江大学学报(工学版). 2021(12): 2243-2251 .
    8. 王磊,俞峰,王子郡. 黏性土中钢管桩承载力的静力触探设计方法. 工业建筑. 2021(10): 163-169 .
    9. 刘路路,蔡国军,耿功巧,刘松玉. 考虑土塞效应的开口管桩承载力CPTU计算方法. 东南大学学报(自然科学版). 2020(02): 280-285 .
    10. 陈伟,谢建斌,赵一锦,孙孝海,叶海涵,林煌超. 饱和沙土中高频液压振动沉桩敏感性因素分析. 哈尔滨商业大学学报(自然科学版). 2020(02): 214-218 .
    11. 唐德康. 上海某深基坑降水抽水试验研究. 佳木斯大学学报(自然科学版). 2019(03): 363-366 .
    12. 汪志涛,蓝天鹏,张明瑞. 钢钎静探设备的研制及其在输电线路工程勘察中的应用. 工程与建设. 2019(05): 737-739 .

    Other cited types(9)

Catalog

    Article views (265) PDF downloads (226) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return