• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WEI Xing, CHENG Shitao, XIE Xiangyan, CHEN Rui. SPH-FEM simulation of landslide induced by earthquake considering velocity weakening effect of frictional strength[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1753-1761. DOI: 10.11779/CJGE20230463
Citation: WEI Xing, CHENG Shitao, XIE Xiangyan, CHEN Rui. SPH-FEM simulation of landslide induced by earthquake considering velocity weakening effect of frictional strength[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1753-1761. DOI: 10.11779/CJGE20230463

SPH-FEM simulation of landslide induced by earthquake considering velocity weakening effect of frictional strength

More Information
  • Received Date: May 23, 2023
  • Available Online: December 19, 2023
  • Based on the SPH-FEM coupling method, a frictional velocity weakening model for sliding surface is introduced and a numerical simulation method which can simulate the whole failure process of the landslides triggered by earthquake is proposed. The Tangjiashan landslide is simulated by the proposed method, and the simulated results are consistent with the on-site investigations and the laboratory test results. Based on the calculated frictional strength on the sliding surface, the whole failure process of the Tangjiashan landslide is divided into four stages: the triggering stage, the frictional weakening stage, the low frictional stage and the gradually stabilizing stage. The simulated results indicate that the high-speed movement of the sliding body is triggered by the interaction of the increase of the velocity and the decrease of the frictional strength. The parameter R defined by the ratio of the dynamic frictional force fd to the dynamic sliding force Td is suggested to evaluate the failure of large landslides. When R less than 1 occurs for the first time, the stress on the sliding surface reaches the shear strength and slope failure occurs. Based on the evolution of friction coefficient at different positions of the sliding surface, the frictional weakening of the sliding surface and the gradual failure of the landslide are revealed. The large-scale landslide is supposed to be triggered by the joint effects of the earthquake and the frictional velocity weakening.
  • [1]
    FRANÇOIS L. The mobility of long-runout landslides[J]. Engineering Geology, 2002, 63(3): 301-331.
    [2]
    LUCAS A, MANGENEY A, AMPUERO J P. Frictional velocity-weakening in landslides on Earth and on other planetary bodies[J]. Nature Communications, 2014, 5(9): 3417.
    [3]
    YANG C M, YUA W L, DONG J J, et al. Initiation, movement, and run-out of the giant Tsaoling landslide-What can we learn from a simple rigid block model and a velocity-displacement dependent friction law[J]. Engineering Geology, 2014, 182(1): 158-181.
    [4]
    陈果, 钮志林, 樊晓一, 等. 高速远程滑坡沿程速度演化与冲击力分布研究—以三溪村滑坡为例[J]. 自然灾害学报, 2022, 31(3): 232-241. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202203024.htm

    CHEN Guo, NIU Zhilin, FAN Xiaoyi, et al. Velocity evolution and impact force distribution of high-velocity and long-runout landslide debris flow along the way: a case study of Sanxi Village landslide[J]. Journal of Natural Disasters, 2022, 31(3): 232-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202203024.htm
    [5]
    王鲁男, 晏鄂川, 宋琨, 等. 滑带土残余强度的速率效应及其对滑坡变形行为的影响[J]. 中南大学学报: 自然科学版, 2017, 48(12): 3350-3358. doi: 10.11817/j.issn.1672-7207.2017.12.028

    WANG Lunan, YAN Echuan, SONG Kun, et al. Rate effect of residual strength of slip soils and its impact on deformation process of landslides[J]. Journal of Central South University (Science and Technology), 2017, 48(12): 3350-3358. (in Chinese) doi: 10.11817/j.issn.1672-7207.2017.12.028
    [6]
    WANG F, ZHANG Y, HUO Z, et al. Mechanism for the rapid motion of the Qianjiangping landslide during reactivation by the first impoundment of the Three Gorges Dam Reservoir, China[J]. Landslides, 2008, 5(4): 379-386. doi: 10.1007/s10346-008-0130-7
    [7]
    张卫杰, 余瑞华, 陈宇, 等. 强度指标影响下滑坡运动特征及参数反分析[J]. 岩土工程学报, 2022, 44(12): 2304-2311. doi: 10.11779/CJGE202212018

    (ZHANG Weijie, YU Ruihua, CHEN Yu, et al. Post-failure movement characteristics and parameter back-analysis for landslides considering effect of strength parameters[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2304-2311. doi: 10.11779/CJGE202212018
    [8]
    SASSA K, FUKUOKA H, WANG G H, et al. Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics[J]. Landslides, 2004(1): 7-19.
    [9]
    胡明鉴, 汪发武, 程谦恭. 基于高速环剪试验易贡巨型滑坡形成原因试验探索[J]. 岩土工程学报, 2009, 31(10): 1602-1606. doi: 10.3321/j.issn:1000-4548.2009.10.020

    HU Mingjian, WANG Fawu, CHENG Qiangong. Formation of tremendous Yigong landslide based on high-speed shear tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1602-1606. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.10.020
    [10]
    崔圣华, 裴向军, 王功辉, 等. 基于环剪试验的汶川地震大型滑坡启动机理探索[J]. 岩土工程学报, 2017, 39(12): 2268-2277. doi: 10.11779/CJGE201712016

    CUI Shenghua, PEI Xiangjun, WANG Gonghui, et al. Initiation of a large landslide triggered by Wenchuan earthquake based on ring shear tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2268-2277. (in Chinese) doi: 10.11779/CJGE201712016
    [11]
    IKARI M J, MARONE C, SAFFERA D M. On the relation between fault strength and frictional stability[J]. Geology, 2011, 39(1): 83-86. doi: 10.1130/G31416.1
    [12]
    BEELER N M, TULLIS T E, GOLDSBY D L. Constitutive relationships and physical basis of fault strength due to flash heating[J]. Journal of Geophysical Research, 2008, 113: B01401.
    [13]
    TOGO T, SHIMAMOTO T, MA S, et al. High-velocity frictional behavior of Longmenshan fault gouge from Hongkou outcrop and its implications for dynamic weakening of fault during the 2008 Wenchuan earthquake[J]. Earthquake Science, 2011, 24(3): 267-281. doi: 10.1007/s11589-011-0790-6
    [14]
    汪发武. 地震诱发的高速远程滑坡过程中土结构破坏和土粒子破碎引起的两种不同的液化机理[J]. 工程地质学报, 2019, 27(1): 98-107. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201901011.htm

    WANG Fawu. Liquefactions caused by structure collapse and grain crushing of soils in rapid and long runout landslides triggered by earthquakes[J]. Journal of Engineering Geology, 2019, 27(1): 98-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201901011.htm
    [15]
    SASSA K, DANG K, HE B, et al. A new high-stress undrained ring-shear apparatus and its application to the 1792 Unzen–Mayuyama megaslide in Japan[J]. Landslides, 2014, 11: 827-842. doi: 10.1007/s10346-014-0501-1
    [16]
    KEEFER D K, WILSON R C. Predicting earthquake-induced landslides, with emphasis on arid and semi-arid environments[C]// Landslides Arid Semi-arid Environ. Yinchuan, 1989.
    [17]
    ROMEO R. Seismically induced landslide displacements: a predictive model[J]. Engineering Geology, 2000, 58(3): 337-351. doi: 10.3969/j.issn.1004-9665.2000.03.015
    [18]
    JIBSON R W. Methods for assessing the stability of slopes during earthquakes-a retrospective[J]. Engineering Geology, 2011, 122(1): 43-50.
    [19]
    DONG J J, LEE W R, LIN M L, et al. Effects of seismic anisotropy and geological characteristics on the kinematics of the neighboring Jiufengershan and Hungtsaiping landslides during Chi-Chi earthquake[J]. Tectonophysics, 2009, 466(3/4): 438-457.
    [20]
    YANG C M, HSU C H, DONG J J. Critical displacement of earthquake-triggered catastrophic landslides[C]// Advancing Culture of Living with Landslides. Cham, 2017.
    [21]
    曹琰波, 戴福初, 许冲, 等. 唐家山滑坡变形运动机制的离散元模拟[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2878-2887. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm

    CAO Yanbo, DAI Fuchu, XU Chong, et al. Discrete element simulation of deformation and movement mechanism for tangjiashan landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2878-2887. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1039.htm
    [22]
    张迎宾, 董琰, 陈岩岩, 等. 基于强度衰减的Vajont滑坡运动特征非连续变形分析[J]. 西南交通大学学报, 2021, 56(6): 1205-1213. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202106010.htm

    ZHANG Yingbin, DONG Yan, CHEN Yanyan, et al. Effects of strength degradation of sliding mass on movement of vajont landslide numerical simulation based on discontinuous deformation analysis[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1205-1213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202106010.htm
    [23]
    ZHANG W J, JI J, GAO Y F. SPH-based analysis of the post-failure flow behavior for soft and hard interbedded earth slope[J]. Engineering Geology, 2019, 267: 105446.
    [24]
    黄帅, 刘传正, GODA K. 光滑粒子流体动力学方法在饱和边坡地震滑移大变形中的适用性研究[J]. 岩土工程学报, 2023, 45(2): 336-344. doi: 10.11779/CJGE20211274

    HUANG Shuai, LIU Chuanzheng, GODA K. Applicability of smooth particle hydrodynamics method to large sliding deformation of saturated slopes under earthquake action[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 336-344. (in Chinese) doi: 10.11779/CJGE20211274
    [25]
    李云屹, 王睿, 张建民. 瑞利波作用下缓倾场地流滑大变形的SPH数值模拟[J]. 岩土工程学报, 2023, 45(7): 1333-1340. doi: 10.11779/CJGE20220489

    LI Yunyi, WANG Rui, ZHANG Jianmin. Numerical simulation of Rayleigh wave-induced large lateral spreading deformation in gentle sloping ground using SPH[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1333-1340. (in Chinese) doi: 10.11779/CJGE20220489
    [26]
    钟祖良, 贺凯源, 宋宜祥, 等. 基于仿射速度矩阵改进物质点法的大位移滑坡研究[J]. 岩土工程学报, 2022, 44(9): 1626-1634. doi: 10.11779/CJGE202209007

    ZHONG Zuliang, HE Kaiyuan, SONG Yixiang, et al. Large-displacement landslides based on affine velocity matrix-improved material point method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1626-1634. (in Chinese) doi: 10.11779/CJGE202209007
    [27]
    ZHAO L H, QIAO N, HUANG D L, et al. Numerical investigation of the failure mechanisms of soil–rock mixture slopes by material point method[J]. Computers and Geotechnics, 2022, 150: 104898.
    [28]
    SOGA K, ALONSO E, YERRO A, et al. Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method[J]. Géotechnique, 2016, 66(3): 1-26.
    [29]
    胡卸文, 黄润秋, 施裕兵, 等. 唐家山滑坡堵江机制及堰塞坝溃坝模式分析[J]. 岩石力学与工程学报, 2009, 28(1): 181-189. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200901027.htm

    HU Xiewen, HUANG Runqiu, SHI Yubing, et al. Analysis of blocking river mechanism of Tangjiashan landslide and dam-breaking mode of its barrier dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 181-189. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200901027.htm
    [30]
    李守定, 李晓, 张军, 等. 唐家山滑坡成因机制与堰塞坝整体稳定性研究[J]. 岩石力学与工程学报, 2010, 29(增刊1): 2908-2915. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1049.htm

    LI Shouding, LI Xiao, ZHANG Jun, et al. Study of geological origin mechanism of Tangjiashan landslide and entire stability of landslide dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2908-2915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1049.htm
    [31]
    罗刚. 唐家山高速短程滑坡堵江及溃坝机制研究[D]. 成都: 西南交通大学, 2012.

    LUO Gang. Analysis of Blocking Mechanism of Tangjiashan High-Speed Short-Run Landslide and Dam-Breaking Mode of Tangjiashan Barrier Dam[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
    [32]
    International Union of Geological Sciences Working Group on Landslides. A suggested method for describing the rate of movement of a landslide[J]. Bulletin of the International Association of Engineering Geology, 1995, 52(1): 75-78.
    [33]
    李坤, 程谦恭, 林棋文, 等. 高速远程滑坡颗粒流研究进展[J]. 地球科学, 2022, 47(3): 893-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203012.htm

    LI Kun, CHENG Qiangong, LIN Qiwen, et al. State of the art on rock avalanche dynamics from granular flow mechanics[J]. Earth Science, 2022, 47(3): 893-912. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203012.htm
    [34]
    董金玉, 赵志强, 郑珠光, 等. 大型地震滑坡高速滑动堵江机制的离散元数值模拟[J]. 华北水利水电大学学报(自然科学版), 2015, 36(6): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL201506012.htm

    DONG Jinyu, ZHAO Zhiqiang, ZHENG Zhuguang, et al. Discrete element numerical simulation of the mechanism of the large-scale earthquake high-speed landslide's blocking the river[J]. Journal of North China University of Water Resources and Electric Power, 2015, 36(6): 47-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL201506012.htm
    [35]
    邬爱清, 林绍忠, 马贵生, 等. 唐家山堰塞坝形成机制DDA模拟研究[J]. 人民长江, 2008, 39(22): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE200822036.htm

    WU Aiqing, LIN Shaozhong, MA Guisheng, et al. DDA simulation research for formation mechanism of Tangjiashan barrier lake[J]. Yangtze River, 2008, 39(22): 91-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE200822036.htm
    [36]
    SONE H, SHIMAMOTO T. Frictional resistance of faults during accelerating and decelerating earthquake slip[J]. Nature Geoscience, 2009, 2(10): 705-708.
    [37]
    LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain Lagrangian hydrodynamics[J]. Journal of Computational Physics, 1993, 109(1): 67-75.
    [38]
    MORRIS J P, FOX P J, ZHU Y. Modeling low Reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997, 136(1): 214-226.
    [39]
    DOMNIK B, PUDASAINI S P, KATZENBACH R, et al. Coupling of full two-dimensional and depth-averaged models for granular flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 201: 56-68.
    [40]
    CRESPO A J C, GOMEZ G M, DALRYMPLE R A. Boundary conditions generated by dynamic particles in SPH methods[J]. Computers Materials and Continua, 2007, 5(3): 173-184.
  • Related Articles

    [1]ZHOU Xin-chao, MA Xiao-jing, LIAO Xiang-yun, QI Si-wei, LI Hong-yu. Numerical simulation of abrasive water jet impacting porous rock based on SPH method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 731-739. DOI: 10.11779/CJGE202204016
    [2]LIANG Jian-wen, ZHU Jun. FEM-IBEM coupling method for nonlinear seismic response analysis of underground structures in water-saturated soft soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 1977-1987. DOI: 10.11779/CJGE201811003
    [3]ZHANG Wei-jie, GAO Yu-feng, HUANG Yu, MAEDA Kenichi. Normalized correction of soil-water-coupled SPH model and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 262-269. DOI: 10.11779/CJGE201802006
    [4]LIU Zhong-xian, HUANG Lei, LIANG Jian-wen. FEM -IBIEM coupled method for simulating scattering of seismic waves by 3-D complex local site[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 301-310. DOI: 10.11779/CJGE201702014
    [5]TANG Yu-feng, SHI Fu-qiang, LIAO Xue-yan. Failure criteria based on SPH slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 904-908. DOI: 10.11779/CJGE201605016
    [6]CHEN Pei-pei, BAI Bing. Numerical simulation of moisture-heat coupling in porous media with circular heat source by SPH method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1025-1030. DOI: 10.11779/CJGE201506008
    [7]LIU Zhong-xian, WANG Dong. Effect of different wave velocity models on seismic response of alluvial valley based on FEM-IBIEM[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1289-1301. DOI: 10.11779/CJGE201407013
    [8]ZHANG Zhi-guo, HUANG Mao-song, WANG Wei-dong. DCBEM-FEM coupling method for response analysis of adjacent pipelines due to tunneling[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1554-1561.
    [9]HUANG Yu, HAO Liang, NONOYAMA Hideto. The state of the art of SPH method applied in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 256-262.
    [10]CHENG Yungming, ZHANG Yonghui, WANG Kejun. Coupling of FEM and DDA Method[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 727-730.
  • Cited by

    Periodical cited type(1)

    1. 王文韬,王尹军,吴春平,刘玉龙,余梦飞,闫国斌,张阳,黄磊. 某大型露天铀矿压渣爆破数值模拟研究. 工程爆破. 2024(06): 79-86 .

    Other cited types(1)

Catalog

    Article views (310) PDF downloads (82) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return