• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
KONG Ling-ming, YAO Yang-ping. K0-anisotropic UH model considering time effects[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 812-820. DOI: 10.11779/CJGE201505006
Citation: KONG Ling-ming, YAO Yang-ping. K0-anisotropic UH model considering time effects[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 812-820. DOI: 10.11779/CJGE201505006

K0-anisotropic UH model considering time effects

More Information
  • Received Date: June 23, 2014
  • Published Date: May 19, 2015
  • The time-dependent unified hardening constitutive model for overconsolidated clays (time-dependent UH model) proposed by the authors is extended to a constitutive model considering K0-anisotropy. Based on the generalized non-linear strength criterion and the corresponding transformed stress tensor, the new model is generalized to the three-dimensional stress state. The new model is then used to predict one-dimensional and triaxial CRS (constant rate of strain) tests on K0-consolidated clays. The predicted results indicate that the new model can reflect reasonably the influence of strain rate on preconsolidation pressure and stress-strain relationship of K0-consolidated clays. Moreover, a theoretical function of triaxial undrained shear strength is deduced from basic equations of the new model. The calculated results of the theoretical function are compared with the experimental ones, and it is shown that the theoretical function can describe the experimental phenomenon that triaxial undrained strength increases with the increasing overconsolidation degree or the strain rate.
  • [1]
    SECHIGUCHI H, OHTA H. Induced anisotropy and time dependency in clays[C]//Proceeding of the 9th International Conference on Soil Mechanics and Foundation Engineering. Tokyo, 1977.
    [2]
    WHEELER S J, NAATANEN A, KARSTUNEN M, et al. An anisotropic elastoplastic model for soft clays[J]. Canadian Geotechnical Journal, 2003, 40: 403-418.
    [3]
    ADACHI T, OKA F. Constitutive equations for normally consolidated clay based on elasto-viscoplasticity[J]. Soils and Foundations, 1982, 22(4): 57-70.
    [4]
    KUTTER B L, SATHIALINGAM N. Elastic viscoplastic modeling of the rate-dependent behavior of clays[J]. Géotechnique, 1992, 42(3): 427-441.
    [5]
    YIN J H, ZHU J G, GRAHAM J. A new elastic viscoplastic model for time-dependent behaviour of normally consolidated and overconsolidated clays[J]. Canadian Geotechnical Journal, 2002, 39(1): 157-173.
    [6]
    ZHOU C, YIN J H, ZHU J G, et al. Elastic anisotropic viscoplastic modeling of the strain-rate-dependent stress-strain behavior of K0 -consolidated natural marine clays in triaxial shear tests[J]. International Journal of Geomechanics, 2005, 5(3): 218-232.
    [7]
    王立忠, 但汉波. K0 软黏土的弹黏塑性本构模型[J]. 岩土工程学报, 2007, 29(9): 1344-1354. (WANG Li-zhong, DAN Han-bo. Elastic viscoplastic constitutive model for K0 -consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1344-1354. (in Chinese))
    [8]
    姚仰平, 侯伟. K0 超固结土的统一硬化模型[J]. 岩土工程学报, 2008, 30(3): 316-322. (YAO Yang-ping, HOU Wei. A unified hardening model for K0 overconsolidated clays [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 316-322. (in Chinese))
    [9]
    YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469.
    [10]
    LUO T, YAO Y P, CHU J. Asymptotic state behaviour and its modeling for saturated sand[J]. Science China-Technological Sciences, 2009, 52(8): 2350-2358.
    [11]
    姚仰平, 余亚妮. 基于统一硬化参数的砂土临界状态本构模型[J]. 岩土工程学报, 2011, 33(12): 1827-1832. (YAO Yang-ping, YU Ya-ni. Extended critical state constitutive model for sand based on unified hardening parameter[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1827-1832. (in Chinese))
    [12]
    YAO Y P, GAO Z W, ZHAO J D, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic Hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 860-868.
    [13]
    YAO Y P, KONG Y X. Extended UH Model: three-dimensional unified hardening model for anisotropic clays[J]. Journal of Engineering Mechanics, 2012, 138(7): 853-866.
    [14]
    YAO Y P, KONG L M, HU J. An elastic-viscous-plastic model for overconsolidated clays[J]. Science China- Technological Sciences, 2013, 56(2): 441-457.
    [15]
    BORJA R I, KAVAZANJIAN E. A constitutive model for the stress-strain-time behavior of ‘wet clays’[J]. Géotechnique, 1985, 35(3): 283-298.
    [16]
    KALIAKIN V N, DAFALIAS Y F. Theoretical aspects of elastoplastic-viscoplastic bounding surface model for cohesive soils[J]. Soils and Foundations, 1990, 30(3): 11-24.
    [17]
    YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63(15): 1328-1345.
    [18]
    YAO Y P, LU D C, ZHOU A N, et al. Generalized non-linear strength theory and transformed stress space[J]. Science China-Technological Sciences, 2004, 47(6): 691-709.
    [19]
    姚仰平, 路德春, 周安楠. 岩土类材料的变换应力空间及其应用[J]. 岩土工程学报, 2005, 27(1): 24-29. (YAO Yang-ping, LU De-chun, ZHOU An-nan. Transformed stress space for geomaterials and its application[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 24-29. (in Chinese))
    [20]
    王乃东, 姚仰平. 基于变换应力方法的各向异性模型三维化[J]. 岩土工程学报, 2011, 33(1): 50-56. (WANG Nai-dong, YAO Yang-ping. Generalization of anisotropic constitutive models using transformed stress method [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 50-56. (in Chinese))
    [21]
    YAO Y P, WANG N D. Transformed stress method for generalizing soil constitutive models[J]. Journal of Engineering Mechanics, 2014, 140(3): 614-629.
    [22]
    李作勤. 影响黏土静止土压力的一些问题[J]. 岩土力学, 1995, 16(1): 9-16. (LI Zuo-qin. Some problems affecting lateral earth pressure at rest in clays[J]. Rock and Soil Mechanics, 1995, 16(1): 9-16. (in Chinese))
    [23]
    侯伟, 姚仰平, 崔文杰. K0 超固结土的不排水抗剪强度[J]. 力学学报, 2008, 40(6): 795-803. (HOU Wei, YAO Yang-ping, CUI Wen-jie. Undrained shear strength for K0 overconsolidated clays[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6): 795-803. (in Chinese))
    [24]
    MESRI G, CHOI Y K. Settlement analysis of embankments on soft clays[J]. Journal of Geotechnical Engineering, 1985, 111(4): 441-464.
    [25]
    但汉波. 天然软黏土的流变特性[D]. 杭州: 浙江大学, 2009. (DAN Han-bo. Time-dependent behavior of natural soft clays[D]. Hangzhou: Zhejiang University, 2009. (in Chinese))
    [26]
    HINCHBERGER S D, ROWE R K. Evaluation of the predictive ability of two elastic-viscoplastic constitutive models[J]. Canadian Geotechnical Journal, 2005, 42: 1675-1694.
    [27]
    ZHU J G. Experimental study and elastic visco-plastic modeling of the time-dependent stress-strain behaviour of Hong Kong marine deposits[D]. Hong Kong: The Hong Kong Polytechnic University, 2000.
  • Related Articles

    [1]LI Li, LIU Zi-ru. Method for lateral forces in stability analysis of concave slopes in plan view[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 137-141. DOI: 10.11779/CJGE2018S2028
    [2]QIN Zhong-guo, ZHANG Xiang-yang. New method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 946-951. DOI: 10.11779/CJGE201605022
    [3]CAO Ping, LIU Di-xu. Application of improved CSMR method to opencast mining slopes[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1544-1548. DOI: 10.11779/CJGE201508027
    [4]LEI Guo-hui, ZHENG Qiang. Issues on concepts of effective stress and seepage force arising from anatomizing Swedish slice method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 667-676.
    [5]WANG Hongbo, SHAO Longtan, XIONG Baolin. Improved method to determine parameters n and hs of a hypoplastic constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1173-1176.
    [6]ZHANG Qianfei, WU Zhongru. The improved cut-off negative pressure method for unsteady seepage flow with free surface[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 48-54.
    [7]SHI Weimin, ZHENG Yingren, TANG Boming, ZHANG Luyu. Accuracy and application range of Imbalance Thrust Force Method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 313-317.
    [8]WANG Jianfeng. An analytical method of the stabilizing force of piles for landslide control using Janbu’s generalized procedure of slices[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 455-458.
    [9]Wang Zhiyin, Li Yunpeng. Some improvements in the numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(6): 36-39.
    [10]Zhang Xiong. lmProved Slice Method for Slope Stability Analysis[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 84-92.

Catalog

    Article views (300) PDF downloads (299) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return