• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
BU Jian-qing, WANG Tian-liang. Influences of freeze-thaw and fines content on mechanical properties of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 608-614. DOI: 10.11779/CJGE201504005
Citation: BU Jian-qing, WANG Tian-liang. Influences of freeze-thaw and fines content on mechanical properties of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 608-614. DOI: 10.11779/CJGE201504005

Influences of freeze-thaw and fines content on mechanical properties of coarse-grained soil

More Information
  • Received Date: April 14, 2014
  • Published Date: May 05, 2015
  • For the promotion and application of coarse-grained soil fillings in the railway subgrade in frozen regions, the shear strength properties of coarse-grained soil with fines content under freeze-thaw cycles are directly related to the subgrade stability. The influencing rules of freeze-thaw cycles, fines content and confining pressure on the shear strength properties of coarse-grained soil are therefore thoroughly studied and analyzed in laboratory tests. The results show that with the increasing increment of fines content, the stress-strain curve of coarse-grained soil changes from strain-softening before freeze-thaw cycles to strain-hardening after freeze-thaw cycles. With the increasing of fines content, the cohesion function of fines effectively enhances the shear strength of coarse-grained soil before freeze-thaw cycles, but the frost heave properties of fines decrease the shear strength of coarse-grained soil after freeze-thaw cycles. The shear strength indexes of coarse-grained soil decrease and then are steady after 6 freeze-thaw cycles. The confining pressure effectively enhances the shear strength of coarse-grained soil. Finally, the reasonable fines content of 5% is recommended for the railway subgrade coarse-grained soil fillings in frozen regions, and the mechanical indexes of the 6th freeze-thaw cycle are suggested for the engineering design values.
  • [1]
    朱俊高, 吉恩跃, 方智荣, 等. 粗粒土等压固结与 K0 固结三轴试验比较[J]. 防灾减灾工程学报, 2013, 33(4): 394-398. (ZHU Jun-gao, JI En-yue, FANG Zhi-rong, et al. Comparison of triaxial tests with K0 -consolidated and isotropically consolidated specimens of coarse grained soil[J]. Journal of Disaster Prevention and Mitigation Engineering, 2013, 33(4): 394-398. (in Chinese))
    [2]
    褚福永, 朱俊高, 贾华, 等. 粗粒土卸载—再加载力学特性试验研究[J]. 岩土力学, 2012, 33(4): 1061-1066. (CHU Fu-yong, ZHU Jun-gao, JIA Hua, et al. Experimental study of mechanical behaviour of coarse-grained soil in unloading and reloading[J]. Rock and Soil Mechanics, 2012, 33(4): 1061-1066. (in Chinese))
    [3]
    朱俊高, 王元龙, 贾华, 等. 粗粒土回弹特性试验研究[J]. 岩土工程学报, 2011, 33(6): 950-954. (ZHU Jun-gao, WANG Yuan-long, JIA Hua, et al. Experimental study on resilience behaviour of coarse grained soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 950-954. (in Chinese))
    [4]
    王光进, 杨春和, 张超, 等. 粗粒含量对散体岩土颗粒破碎及强度特性试验研究[J]. 岩土力学, 2009, 30(12): 3649-3654. (WANG Guang-jin, YANG Chun-he, ZHANG Chao, et al. Experimental research on particle breakage and strength characteristics of rock and soil materials with different coarse-grain contents[J]. Rock and Soil Mechanics, 2009, 30(12): 3649-3654. (in Chinese))
    [5]
    蒋中明, 王为, 冯树荣, 等. 应力状态下含黏粗粒土渗透变形特性试验研究[J]. 岩土工程学报, 2014, 36(1): 98-104. (JIANG Zhong-ming, WANG Wei, FENG Shu-rong, et al. Experimental study on influence of stress on seepage failure characteristics of coarse grained soil with cohesive particles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 98-104. (in Chinese))
    [6]
    徐明, 宋二祥. 粗粒土的一种应变硬化模型[J]. 岩土力学, 2010, 31(9): 2967-2973. (XU Ming, SONG Er-xiang. A strain hardening model for rockfills[J]. Rock and Soil Mechanics, 2010, 31(9): 2967-2973. (in Chinese))
    [7]
    周小军, 邹强, 向灵芝. 粗粒土应力-应变特征试验[J]. 西南科技大学学报, 2012, 27(4): 40-43. (ZHOU Xiao-jun, ZOU Qiang, XIANG Ling-zhi. Mechanical study on the coarse-grained soil using laboratory triaxial test[J]. Journal of Southwest University of Science and Technology, 2012, 27(4): 40-43. (in Chinese))
    [8]
    张莎莎, 杨晓华. 粗粒盐渍土大型冻融循环剪切试验[J]. 长安大学学报(自然科学版), 2012, 32(3): 11-16. (ZHANG Sha-sha, YANG Xiao-hua. Large shear test on coarse saline soil with freeze-thaw cycle[J]. Journal of Chang’an University (Natural Science), 2012, 32(3): 11-16. (in Chinese))
    [9]
    王光进, 杨春和, 张超, 等. 粗粒土三轴试验数值模拟与试样颗粒初始架构初探[J]. 岩土力学, 2011, 32(2): 585-592. (WANG Guang-jin, YANG Chun-he, ZHANG Chao, et al. Numerical simulation triaxial tests for coarse-grained soil and preliminary study of initial fabric of sample grain[J]. Rock and Soil Mechanics, 2011, 32(2): 585-592. (in Chinese))
    [10]
    陈坚, 罗强, 陈占, 等. 客运专线基床底层砾石土填料物理力学性质试验研究[J]. 铁道学报, 2011, 33(7): 91-97. (CHEN Jian, LUO Qiang, CHEN Zhan, et al. Experimental research on physical and mechanical properties of gravelly soil filling the base course of the subgrade bed of passenger dedicated line[J]. Journal of the China Railway Society, 2011, 33(7): 91-97. (in Chinese))
    [11]
    KONRAD J M, LEMIEUX N. Influence of fines on frost heave characteristics of a well-graded base-course material[J]. Canadian Geotechnical Journal, 2005, 42(2): 515-527.
    [12]
    张以晨, 李欣, 张喜发, 等. 季冻区公路路基粗粒土的冻胀敏感性及分类研究[J]. 岩土工程学报, 2007, 29(10): 1522-1526. (ZHANG Yi-chen, LI Xin, ZHANG Xi-fa, et al. Research on frost heave susceptibility and classification of coarse grained soil of highway subgrade in seasonally frozen ground region[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1522-1526. (in Chinese))
    [13]
    王天亮, 岳祖润. 细粒含量对粗粒土冻胀特性影响的试验研究[J]. 岩土力学, 2013, 34(3): 359-365. (WANG Tian-liang, YUE Zu-run. Influence of fines content on frost heaving properties of coarse grained soil[J]. Rock and Soil Mechanics, 2013, 34(3): 359-365. (in Chinese))
    [14]
    铁道部第三勘测设计研究院.冻土工程[M]. 北京:中国铁道出版社, 1994. (The Third Railway Survey & Design Institute. Permafrost engineering[M]. Beijing: China Railway Publishing House, 1994. (in Chinese))
    [15]
    柴贺军, 陈谦应, 孔祥臣, 等. 土石混填路基修筑技术研究综述[J]. 岩土力学, 2004, 25(6): 1005-1010. (CHAI He-jun, CHEN Qian-ying, KONG Xiang-chen, et al. Overview of soil-stone high embankment construction study[J]. Rock and Soil Mechanics, 2004, 25(6): 1005-1010. (in Chinese))
    [16]
    蒋建清, 杨果林, 李昀, 等. 格宾网加筋红砂岩粗粒土的强度和变形特性[J]. 岩土工程学报, 2010, 32(7): 1079-1086. (JIANG Jian-qing, YANG Guo-lin, LI Yun, et al. Strength and deformation characteristics of red-sandstone granular soil reinforced with gabion mesh[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1079-1086. (in Chinese))
    [17]
    陈晓斌, 张家生, 封志鹏. 红砂岩粗粒土流变工程特性试验研究[J]. 岩石力学与工程学报, 2007, 26(3): 601-607. (CHEN Xiao-bin, ZHANG Jia-sheng, FENG Zhi-peng. Experimental study on rheological engineering properties of coarsely granular red sandstone soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 601-607. (in Chinese))
    [18]
    YUE Zu-run, WANG T L, MA C, et al. Frost heave control of fine round gravel fillings in deep seasonal frozen regions[J]. Science in Cold and Arid Regions, 2013, 5(4): 425-432.
  • Related Articles

    [1]ZHANG Le, DANG Fa-ning, WANG Xu, DING Jiu-long, GAO Jun. Calculation and analysis of earth pressure under limited displacement considering influences of internal friction angle[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 81-86. DOI: 10.11779/CJGE2021S1015
    [2]HU Zai-qiang, GUO Jing, LIANG Zhi-chao, WANG Kai, FENG Zhe, CHEN Zhen-peng. Effects of clay content on physical and mechanical properties of fine tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 16-21. DOI: 10.11779/CJGE2020S1004
    [3]ZHAO Fu-tang, CHANG Li-jun, ZHANG Wu-yu. Experimental study on dynamic strength parameters of subgrade saline soil under temperature variation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 217-220. DOI: 10.11779/CJGE2019S1055
    [4]YANG Ren-shu, CHEN Jun, FANG Shi-zheng, HOU Li-dong, CHEN Shuai-zhi. Inversion analysis of M-C criterion parameters of rock based on uniaxial shearing failure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1351-1356. DOI: 10.11779/CJGE201707023
    [5]JIA Liang, ZHU Yan-peng, ZHU Jun-chuan. Influencing factors for shear strength of Malan and Lishi compacted loess in Lanzhou[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 120-124. DOI: 10.11779/CJGE2014S2020
    [6]XIAO Yang, LIU Han-long, CHEN Yu-min. Unified relationship between intermediate principal stress and internal friction angle for sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1102-1108.
    [7]Yang NoneSheng-Qi. Method for strength parameters of coal samples with different diameters[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [8]MA Ping, QIN Siqing, SUN Qiang. Computation of lateral soil pressure on soil nailing wall considering cohesion force and cut slope angle[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1888-1891.
    [9]CAI Yi, SHI Bin, LIU Zhibin, TANG Chaosheng, WANG Baojun. Experimental study on effect of aggregate size on strength of filled soils[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1482-1486.
    [10]Guo Shaohua. Standard space theory of strength criterion for anisotropic internal friction materials[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 340-343.
  • Cited by

    Periodical cited type(17)

    1. 梁绍敏,冯云田,赵婷婷,王志华. 颗粒材料破碎行为数值分析方法研究综述. 力学学报. 2024(01): 1-22 .
    2. 程瑞林,汪泾周,范钦煜,湛正刚,周伟,马刚. 高心墙堆石坝材料本构模型计算的适用性研究. 中南大学学报(自然科学版). 2024(01): 219-229 .
    3. 韩超,俞越中,柏彬,徐志豪,张献蒙,刘寅莹,孔硕颖. 考虑颗粒破碎的固化泥粒-砂土混合填料压缩特性研究. 中外公路. 2024(02): 119-129 .
    4. 徐爽,徐佳琳,许成顺,焦爽. 颗粒破碎对水合物沉积物基质宏-细观力学特性影响的离散元分析. 太阳能学报. 2024(06): 680-690 .
    5. 陈洪春,王珊,段玉昌,王柳江,梁睿斌,徐祥,沈超敏. 基于现场载荷试验的压实土石填筑料变形参数反演. 三峡大学学报(自然科学版). 2023(01): 22-27 .
    6. 胡沈江,郭宁,杨仲轩,赵吉东. 堆石料颗粒破碎强度的尺寸和形状效应隐式离散元研究. 岩土工程学报. 2023(02): 433-440 . 本站查看
    7. 林明春,王观琪,周剑,周伟,安妮,马刚. 循环荷载作用下堆石料滞回行为及变形特性离散元研究(英文). Journal of Zhejiang University-Science A(Applied Physics & Engineering). 2023(04): 350-366 .
    8. 王晋伟,迟世春,闫世豪,郭宇,周新杰. 室内缩尺级配堆石料力学参数的表征单元体积. 浙江大学学报(工学版). 2023(07): 1418-1427 .
    9. 邓磊,温石磊,王琛. 最大粒径对红砂岩粗粒土三轴蠕变性质的影响. 甘肃水利水电技术. 2023(08): 42-46 .
    10. 沈超敏,邓刚,刘斯宏,严俊,毛航宇,王柳江. 基于颗粒堆积算法的堆石料压实密度预测研究. 水利学报. 2023(08): 920-929 .
    11. 李巧学,尚彦军,孙涛,曹小红,许涛. 矿山排土场不同堆排方式下边坡稳定性研究. 新疆地质. 2023(03): 417-423 .
    12. 徐琨,杨启贵,周伟,马刚,黄泉水. 基于可破碎离散元法的堆石料应力变形及剪胀特性缩尺效应研究. 中国农村水利水电. 2022(03): 200-206+211 .
    13. 梅江洲,马刚,邹宇雄,王頔,周伟,常晓林. 颗粒断层泥黏滑运动的研究进展. 中国科学:技术科学. 2022(07): 984-998 .
    14. 徐靖,叶华洋,朱晟. 粗粒料颗粒破碎三维离散元模型及其在密度桶试验中的应用. 河海大学学报(自然科学版). 2022(04): 127-134 .
    15. 肖宇轩,马刚,陆希,周伟,王頔,苗泽锴. 堆石颗粒在复杂约束模式的破碎特性. 浙江大学学报(工学版). 2022(08): 1514-1522+1559 .
    16. 孙壮壮,马刚,周伟,王一涵,陈远,肖海斌. 颗粒形状对堆石颗粒破碎强度尺寸效应的影响. 岩土力学. 2021(02): 430-438 .
    17. 罗奇志,袁朝阳,韩雪刚,罗彪. 土石混填体缩尺效应研究现状与发展趋势. 市政技术. 2021(08): 198-201 .

    Other cited types(10)

Catalog

    Article views (412) PDF downloads (428) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return