• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Shenjiang, GUO Ning, YANG Zhongxuan, ZHAO Jidong. Implicit DEM analyses of size and shape effects on crushing strength of rockfill particles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 433-440. DOI: 10.11779/CJGE20211396
Citation: HU Shenjiang, GUO Ning, YANG Zhongxuan, ZHAO Jidong. Implicit DEM analyses of size and shape effects on crushing strength of rockfill particles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 433-440. DOI: 10.11779/CJGE20211396

Implicit DEM analyses of size and shape effects on crushing strength of rockfill particles

More Information
  • Received Date: November 23, 2021
  • Available Online: February 23, 2023
  • An implicit version of discrete element method (DEM) called non-smooth contact dynamics (NSCD) is used to simulate the crushing process of single rockfill particle under one-dimensional (1D) compression. The angular and irregular shapes of rockfill particles are represented using polyhedrons, which are discretized into smaller elementary cells through the Voronoi tessellation. The interaction between neighboring elementary cells is described by the cohesive zone model (CZM), where hybrid tensile and shear failure modes are considered. Consequently, particle crushing can be captured by the breakage of CZM bonds subjected to external loading. The proposed method for modeling the particle crushing avoids drawbacks of the traditional fragment replacement method and bonded sphere method in DEM. The Brazilian splitting tests on granite are performed to calibrate the parameters for CZM. 1D compression tests on single particles with different sizes and shapes further reveal that the crushing strength of particles follows the Weibull distribution, and both the magnitudes and the variances decrease with the increasing particle size. For the particles with different principal axes (e.g., elongated and platy), the crushing strength loaded in the major axis is the smallest among all directions. It is also shown that the elongated and platy particles have smaller average strength than the spherical ones given the same equivalent particle size.
  • [1]
    徐琨, 周伟, 马刚. 颗粒破碎对堆石料填充特性缩尺效应的影响研究[J]. 岩土工程学报, 2020, 42(6): 1013-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006006.htm

    XU Kun, ZHOU Wei, MA Gang. Influence of particle breakage on scale effect of filling characteristics of rockfill material[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1013-1022. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006006.htm
    [2]
    MCDOWELL G R. On the yielding and plastic compression of sand[J]. Soils and Foundations, 2002, 42(1): 139-145. doi: 10.3208/sandf.42.139
    [3]
    HUANG J, XU S, YI H, et al. Size effect on the compression breakage strengths of glass particles[J]. Powder Technology, 2014, 268: 86-94. doi: 10.1016/j.powtec.2014.08.037
    [4]
    DE BONO J P, MCDOWELL G R. An insight into the yielding and normal compression of sand with irregularly-shaped particles using DEM[J]. Powder Technology, 2015, 271: 270-277. doi: 10.1016/j.powtec.2014.11.013
    [5]
    LAUFER I. Grain crushing and high-pressure oedometer tests simulated with the discrete element method[J]. Granular Matter, 2015, 17(3): 389-412. doi: 10.1007/s10035-015-0559-z
    [6]
    CHENG Y P, NAKATA Y, BOLTON M D. Discrete element simulation of crushable soil[J]. Géotechnique, 2003, 53(7): 633-641. doi: 10.1680/geot.2003.53.7.633
    [7]
    JEAN M. The non-smooth contact dynamics method[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 177(3/4): 235-257.
    [8]
    CAMACHO G T, ORTIZ M. Computational modelling of impact damage in brittle materials[J]. International Journal of Solids and Structures, 1996, 33(20/21/22): 2899-2938.
    [9]
    JIANG H X, MENG D G. 3D numerical modelling of rock fracture with a hybrid finite and cohesive element method[J]. Engineering Fracture Mechanics, 2018, 199: 280-293. doi: 10.1016/j.engfracmech.2018.05.037
    [10]
    喻勇, 尹健民. 三峡花岗岩在不同加载方式下的能耗特征[J]. 岩石力学与工程学报, 2004, 23(2): 205-208. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200402004.htm

    YU Yong, YIN Jianmin. Energy dissipation properties of Three Gorges granite under different loading modes[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(2): 205-208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200402004.htm
    [11]
    QUEY R, DAWSON P R, BARBE F. Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(17/18/19/20): 1729-1745.
    [12]
    SAADAT M, TAHERI A. A cohesive grain based model to simulate shear behaviour of rock joints with asperity damage in polycrystalline rock[J]. Computers and Geotechnics, 2020, 117: 103254. doi: 10.1016/j.compgeo.2019.103254
    [13]
    CANTOR D, AZÉMA E, SORNAY P, et al. Three-dimensional bonded-cell model for grain fragmentation[J]. Computational Particle Mechanics, 2017, 4(4): 441-450. doi: 10.1007/s40571-016-0129-0
    [14]
    周博, 黄润秋, 汪华斌, 等. 基于离散元法的砂土破碎演化规律研究[J]. 岩土力学, 2014, 35(9): 2709-2716. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409039.htm

    ZHOU Bo, HUANG Runqiu, WANG Huabin, et al. Study of evolution of sand crushability based on discrete elements method[J]. Rock and Soil Mechanics, 2014, 35(9): 2709-2716. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409039.htm
    [15]
    MCDOWELL G R, AMON A. The application of weibull statistics to the fracture of soil particles[J]. Soils and Foundations, 2000, 40(5): 133-141. doi: 10.3208/sandf.40.5_133
    [16]
    FU R, HU X L, ZHOU B. Discrete element modeling of crushable sands considering realistic particle shape effect[J]. Computers and Geotechnics, 2017, 91: 179-191. doi: 10.1016/j.compgeo.2017.07.016
    [17]
    HUILLCA Y, SILVA M, OVALLE C, et al. Modelling size effect on rock aggregates strength using a DEM bonded-cell model[J]. Acta Geotechnica, 2021, 16(3): 699-709. doi: 10.1007/s11440-020-01054-z
    [18]
    MCDOWELL G R. Statistics of soil particle strength[J]. Géotechnique, 2001, 51(10): 897-900. doi: 10.1680/geot.2001.51.10.897
    [19]
    XIAO Y, MENG M Q, DAOUADJI A, et al. Effects of particle size on crushing and deformation behaviors of rockfill materials[J]. Geoscience Frontiers, 2020, 11(2): 375-388. doi: 10.1016/j.gsf.2018.10.010
    [20]
    GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society A, 1921, 221: 163–198.
    [21]
    孙壮壮, 马刚, 周伟, 等. 颗粒形状对堆石颗粒破碎强度尺寸效应的影响[J]. 岩土力学, 2021, 42(2): 430-438. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102015.htm

    SUN Zhuangzhuang, MA Gang, ZHOU Wei, et al. Influence of particle shape on size effect of crushing strength of rockfill particles[J]. Rock and Soil Mechanics, 2021, 42(2): 430-438. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102015.htm
    [22]
    ZHU F, ZHAO J D. Interplays between particle shape and particle breakage in confined continuous crushing of granular media[J]. Powder Technology, 2021, 378: 455-467. doi: 10.1016/j.powtec.2020.10.020
    [23]
    WANG Y H, MA G, MEI J Z, et al. Machine learning reveals the influences of grain morphology on grain crushing strength[J]. Acta Geotechnica, 2021, 16(11): 3617-3630.
    [24]
    MA G, ZHOU W, REGUEIRO R A, et al. Modeling the fragmentation of rock grains using computed tomography and combined FDEM[J]. Powder Technology, 2017, 308: 388-397.
    [25]
    ZHU F, ZHAO J D. Multiscale modeling of continuous crushing of granular media: the role of grain microstructure[J]. Computational Particle Mechanics, 2021, 8(5): 1089-1101.
    [26]
    XIAO Y, DESAI C S, LIU H L. Testing and modeling on particle breakage for granular soils[J]. International Journal of Geomechanics, 2021, 21(11): 02021001. http://www.xueshufan.com/publication/3193815105
  • Cited by

    Periodical cited type(7)

    1. 刘华仁,佟大威,余佳,苏哲. 基于模糊聚类和随机子空间的高土石坝模态参数自动识别. 水力发电学报. 2025(02): 107-115 .
    2. 蔡正银,范开放,朱洵. 基于现场试验的海上筒型基础风电结构动力特性研究. 岩土工程学报. 2025(03): 443-452 . 本站查看
    3. 张翰,张锋,谭尧升,姚孟迪,邓检华. 基于运行时模态分析和代理模型的大坝力学参数反演方法. 粉煤灰综合利用. 2025(01): 163-166 .
    4. 王晓澎,张浩,李欣,肖森,刘璇. 基于随机子空间法的滑动轴承运行模态参数识别. 噪声与振动控制. 2024(01): 126-133 .
    5. 樊圆,卢文胜,虞终军,任祥香. 多次地震作用下高层建筑结构动力特性识别和响应分析. 建筑结构学报. 2023(01): 225-234 .
    6. 翟世龙,刘萍,黄静,艾萨·伊斯马伊力,毛玉剑. 基于大坝地震反应台阵的土石坝模态参数识别. 内陆地震. 2023(04): 353-361 .
    7. 黄嘉思,徐文城,段元锋,章红梅. 基于随机子空间方法的向量式有限元索网模型模态识别. 结构工程师. 2022(06): 1-6 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return